skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Unveiling dialysis centers’ vulnerability and access inequality during urban flooding
This study uses mobility data in the context of 2017 Hurricane Harvey in Harris County to examine the impact of flooding on access to dialysis centers. We examined access dimensions using static and dynamic metrics. The static metric is the shortest distance from census block groups to the closest centers. Dynamic metrics are: 1) redundancy (daily unique number of centers visited), 2) frequency (daily number of visits to dialysis centers), and 3) proximity (visits weighted by distance to dialysis centers). The results show that: the extent of dependence of regions on dialysis centers varies; flooding significantly reduces access redundancy and frequency of dialysis centers; regions with a greater minority percentage and lower household income were likely to experience extensive disruptions; high-income regions more quickly revert to pre-disaster levels; larger centers located in non-flooded areas are critical to absorbing the unmet demand from disrupted facilities.  more » « less
Award ID(s):
1832662
PAR ID:
10481367
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Transportation Research Part D: Transport and Environment
Volume:
125
Issue:
C
ISSN:
1361-9209
Page Range / eLocation ID:
103920
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Natural hazards cause disruptions in access to critical facilities, such as grocery stores, impeding residents’ ability to prepare for and cope with hardships during the disaster and recovery; however, disrupted access to critical facilities is not equal for all residents of a community. In this study, we examine disparate access to grocery stores in the context of the 2017 Hurricane Harvey in Harris County, Texas. We utilized high-resolution location-based datasets in implementing spatial network analysis and dynamic clustering techniques to uncover the overall disparate access to grocery stores for socially vulnerable populations during different phases of the disaster. Three access indicators are examined using network-centric measures: number of unique stores visited, average trip time to stores, and average distance to stores. These access indicators help us capture three dimensions of access: redundancy , rapidity , and proximity . The findings show the insufficiency of focusing merely on the distributional factors, such as location in a food desert and number of facilities, to capture the disparities in access, especially during the preparation and impact/short-term recovery periods. Furthermore, the characterization of access by considering combinations of access indicators reveals that flooding disproportionally affects socially vulnerable populations. High-income areas have better access during the preparation period as they are able to visit a greater number of stores and commute farther distances to obtain supplies. The conclusions of this study have important implications for urban development (facility distribution), emergency management, and resource allocation by identifying areas most vulnerable to disproportionate access impacts using more equity-focused and data-driven approaches. 
    more » « less
  2. Abstract Increasing coastal flooding threatens urban centers worldwide. Projections of physical damages to structures and their contents can characterize the monetary scale of risk, but they lack relevant socioeconomic context. The impact of coastal flooding on communities hinges not only on the cost, but on the ability of households to pay for the damages. Here, we repurpose probabilistic risk assessment to analyze the monetary and social risk associated with coastal flooding in the San Francisco Bay Area for 2020–2060. We show that future coastal flooding could financially ruin a substantial number of households by burdening them with flood damage costs that exceed discretionary household income. We quantify these impacts at the census block group scale by computing the percentage of households without discretionary income, before and after coastal flooding costs. We find that for several coastal communities in San Mateo County more than 50% of households will be facing financial instability, highlighting the need for immediate policy interventions that target existing, socially produced risk rather than waiting for potentially elusive certainty in sea level rise projections. We emphasize that the percentage of financially unstable households is particularly high in racially diverse and historically disadvantaged communities, highlighting the connection between financial instability and inequity. While our estimates are specific to the San Francisco Bay Area, our granular, household‐level perspective is transferable to other urban centers and can help identify the specific challenges that different communities face and inform appropriate adaptation interventions. 
    more » « less
  3. In response to the COVID-19 pandemic, a growing number of states, counties and cities in the United States issued mandatory stay-at-home orders as part of their efforts to slow down the spread of the virus. We argue that the consequences of this one-size-fits-all order will be differentially distributed among economic groups. In this paper, we examine social distance behavior changes for lower income populations. We conduct a comparative analysis of responses between lower-income and upper-income groups and assess their relative exposure to COVID-19 risks. Using a difference-in-difference-in-differences analysis of 3140 counties, we find social distance policy effect on the lower-income group is smaller than that of the upper-income group, by as much as 46% to 54%. Our explorations of the mechanisms behind the disparate effects suggest that for the work-related trips the stay-at-home orders do not significantly reduce low income work trips and this result is statistically significant. That is, the share of essential business defined by stay-at-home orders is significantly negatively correlated with income at county level. In the non-work-related trips, we find that both the lower-income and upper-income groups reduced visits to retail, recreation, grocery, and pharmacy visits after the stay-at-home order, with the upper-income group reducing trips more compared to lower-income group. 
    more » « less
  4. Objective:Although extreme heat can impact the health of anyone, certain groups are disproportionately affected. In urban settings, cooling centers are intended to reduce heat exposure by providing air-conditioned spaces to the public. We examined the characteristics of populations living near cooling centers and how well they serve areas with high social vulnerability. Methods:We identified 1402 cooling centers in 81 US cities from publicly available sources and analyzed markers of urban heat and social vulnerability in relation to their locations. Within each city, we developed cooling center access areas, defined as the geographic area within a 0.5-mile walk from a center, and compared sociodemographic characteristics of populations living within versus outside the access areas. We analyzed results by city and geographic region to evaluate climate-relevant regional differences. Results:Access to cooling centers differed among cities, ranging from 0.01% (Atlanta, Georgia) to 63.2% (Washington, DC) of the population living within an access area. On average, cooling centers were in areas that had higher levels of social vulnerability, as measured by the number of people living in urban heat islands, annual household income below poverty, racial and ethnic minority status, low educational attainment, and high unemployment rate. However, access areas were less inclusive of adult populations aged ≥65 years than among populations aged <65 years. Conclusion:Given the large percentage of individuals without access to cooling centers and the anticipated increase in frequency and severity of extreme heat events, the current distribution of centers in the urban areas that we examined may be insufficient to protect individuals from the adverse health effects of extreme heat, particularly in the absence of additional measures to reduce risk. 
    more » « less
  5. Project Overview: This NSF-funded project (Award #2019754) is part of the Belmont Forum’s Disaster Risk, Reduction, and Resilience (DR3) initiative, a global effort to assess and mitigate disaster risks through transdisciplinary collaboration. The study investigates strategies to enhance the resilience of low-income communities living in flood-prone and climate-vulnerable regions, with a geographic focus on Brazil, East Africa, and the southeastern United States. The U.S. component centers on coastal and urban communities in Florida, particularly those at risk from flooding and extreme weather events. Research Objectives: Through a transdisciplinary approach, the project integrates machine learning, geospatial analytics, and socio-economic data to: - Assess community-level vulnerabilities to flooding and extreme heat, -Identify barriers to adopting disaster-resilient housing, - Co-design affordable, climate-resilient housing prototypes using sustainable, locally sourced materials. The research aims to support community-informed design strategies and policy recommendations that are adaptable across different socio-economic and geographic contexts. Dataset Description: The dataset contains responses from approximately 500 residents aged 18+ living in low-income, flood-prone neighborhoods in Florida. The survey captures detailed information on: - Housing conditions and infrastructure, - Disaster preparedness and flood risk perception, - Access to services during and after disasters, - Health and economic impacts of extreme weather events, - Community cohesion and recovery strategies. This dataset serves as a resource for researchers, urban planners, emergency response agencies, and policymakers seeking data-driven insights to inform resilient housing design, climate adaptation, and disaster recovery planning. Data Collection and Anonymity: Survey distribution and data collection were conducted in partnership with Centiment, a third-party research company that recruits demographically targeted panels for academic and applied research. For this study, Centiment distributed the survey to residents of low-income, flood-prone communities in Florida, based on geographic and socio-economic criteria specified by the research team. All personally identifiable information (PII), such as IP addresses, email addresses, and precise geolocation data, was removed prior to uploading the dataset to DesignSafe. The dataset has been reviewed to ensure participant anonymity in accordance with DesignSafe data protection policies and applicable ethical standards. 
    more » « less