skip to main content


Search for: All records

Creators/Authors contains: "Farhadloo, Majid"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The eco-toll estimation problem quantifies the expected environmental cost (e.g., energy consumption, exhaust emissions) for a vehicle to travel along a path. This problem is important for societal applications such as eco-routing, which aims to find paths with the lowest exhaust emissions or energy need. The challenges of this problem are threefold: (1) the dependence of a vehicle's eco-toll on its physical parameters; (2) the lack of access to data with eco-toll information; and (3) the influence of contextual information (i.e. the connections of adjacent segments in the path) on the eco-toll of road segments. Prior work on eco-toll estimation has mostly relied on pure data-driven approaches and has high estimation errors given the limited training data. To address these limitations, we propose a novel Eco-toll estimation Physics-informed Neural Network framework (Eco-PiNN) using three novel ideas, namely, (1) a physics-informed decoder that integrates the physical laws governing vehicle dynamics into the network, (2) an attention-based contextual information encoder, and (3) a physics-informed regularization to reduce overfitting. Experiments on real-world heavy-duty truck data show that the proposed method can greatly improve the accuracy of eco-toll estimation compared with state-of-the-art methods. *The full version of the paper can be accessed at https://arxiv.org/abs/2301.05739 
    more » « less
  2. Abstract. Given aggregated mobile device data, the goal is to understand the impact of COVID-19 policy interventions on mobility. This problem is vital due to important societal use cases, such as safely reopening the economy. Challenges include understanding and interpreting questions of interest to policymakers, cross-jurisdictional variability in choice and time of interventions, the large data volume, and unknown sampling bias. The related work has explored the COVID-19 impact on travel distance, time spent at home, and the number of visitors at different points of interest. However, many policymakers are interested in long-duration visits to high-risk business categories and understanding the spatial selection bias to interpret summary reports. We provide an Entity Relationship diagram, system architecture, and implementation to support queries on long-duration visits in addition to fine resolution device count maps to understand spatial bias. We closely collaborated with policymakers to derive the system requirements and evaluate the system components, the summary reports, and visualizations. 
    more » « less