skip to main content


Search for: All records

Creators/Authors contains: "Farooq, Ahmad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Traditionally, engineering labs are expected to reinforce fundamental science, technology, engineering, and mathematical concepts that students need to demonstrate learning in the discipline. The emergence of online degrees, the COVID pandemic, and the development of virtual lab technologies have advanced how educators design lab courses. As these new laboratory environments and practices emerge, the need for tools to evaluate how students experience and value these labs are needed. The Student Perceived Value of an Engineering Laboratory (SPVEL) assessment instrument was designed to address this need. SPVEL is framed on the Technology Acceptance Model, Inputs-Environment-Outcome Conceptual Model, and Engineering Role Identity model. In this work, the SPVEL is validated for in-person engineering laboratories. An Exploratory Load Factor analysis was conducted on the responses to twenty-five questionnaire items using a dataset of 208 participants. The Principal Components Method was employed to extract five factors. Cronbach’s alphas for data reliability for each factor ranged from 0.65 to 0.93, indicating high internal consistency. SPVEL provides a mechanism for elucidating students’ perception of their laboratory experiences, how these experiences influence their engineering role identities, and how students value laboratory experiences as preparatory and reflective of the skills needed for their careers in engineering.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  2. Free, publicly-accessible full text available July 13, 2025
  3. In physical sciences and engineering research, the study of virtual labs (VL) has generally focused on case studies about their implementation into classrooms or engineering design process and elements. However, few (if any) studies have assessed the viability of using conventional course evaluation instruments (originally designed for traditional in-person classroom environments), to evaluate virtual lab classes. This article presents a preliminary set of results from a study that examines and compares engineering undergraduate students’ evaluations of a capstone mechanical and aerospace engineering laboratory course taught in two different environments: in-person and remotely (virtual/online environment). The instrument used in both cases was the conventional course evaluation instrument that was quantitative and designed using a Likert scale. The aim of this study is to understand how this instrument captures or does not capture the students’ perceptions of their learning of course content in virtual and in-person learning environments. The second aim of this study is to explore students’ perceptions of the effectiveness and acceptance of virtual learning tools and environments applied in engineering laboratory classes. A total of 226 undergraduate students participated in this convergent mixed method study within a mechanical and aerospace engineering department at a research-1 institute in the northeastern region of the United States. Our initial analyses of the students’ course evaluations indicate that there were no statistically significant differences in the perceived teaching effectiveness of the course. However, statistically significant differences were found between the course final grades between students who participated in the in-person lab juxtapose to those who engaged in the virtual laboratory environment. In addition, qualitative results suggest that students’ perceptions of the value of in-person and virtual labs vary depending on prior engineering experiences. These results suggest that there is room for improvement in conventional course evaluation instruments of senior capstone engineering education laboratories that take place either in-person or virtually. 
    more » « less
  4. Spatial skills are fundamental to learning and developing expertise in engineering. This paper describes a new virtual and physical manipulatives (VPM) technology that this research team recently developed to enhance undergraduate engineering students’ spatial skills. This technology consists of ten manipulatives spanning a variety of levels of geometrical complexity. Each manipulative is authentic due to their real-world engineering applications that were chosen to stimulate student interest in engineering. A computer program was developed to connect virtual and physical manipulatives, allowing students to receive spatial training anytime, anywhere through the Internet. Quasi-experimental research, involving an intervention group (n = 37) and a control group (n = 34), was conducted. Each group completed a pre- and post-test using the same assessment instrument that measured students’ spatial skills. Normality tests were conducted. The results show that the data involved in the present study did not have a normal distribution. Thus, non-parametric statistical analysis was performed, including descriptive analysis, correlation analysis, and Mann-Whitney U tests. The results show that the mean value of normalized learning gains is 41.2% for the intervention group, which is 33% higher than that for the control group (8.2%). A statistically significant difference exists between the intervention and control groups in terms of normalized learning gains (P < 0.01). The new VPM technology developed from the present study has a medium effect size (0.34) on improving students’ spatial skills. 
    more » « less