This content will become publicly available on August 1, 2025
Traditionally, engineering labs are expected to reinforce fundamental science, technology, engineering, and mathematical concepts that students need to demonstrate learning in the discipline. The emergence of online degrees, the COVID pandemic, and the development of virtual lab technologies have advanced how educators design lab courses. As these new laboratory environments and practices emerge, the need for tools to evaluate how students experience and value these labs are needed. The Student Perceived Value of an Engineering Laboratory (SPVEL) assessment instrument was designed to address this need. SPVEL is framed on the Technology Acceptance Model, Inputs-Environment-Outcome Conceptual Model, and Engineering Role Identity model. In this work, the SPVEL is validated for in-person engineering laboratories. An Exploratory Load Factor analysis was conducted on the responses to twenty-five questionnaire items using a dataset of 208 participants. The Principal Components Method was employed to extract five factors. Cronbach’s alphas for data reliability for each factor ranged from 0.65 to 0.93, indicating high internal consistency. SPVEL provides a mechanism for elucidating students’ perception of their laboratory experiences, how these experiences influence their engineering role identities, and how students value laboratory experiences as preparatory and reflective of the skills needed for their careers in engineering.
more » « less- Award ID(s):
- 2044879
- PAR ID:
- 10523116
- Publisher / Repository:
- IJERE
- Date Published:
- Journal Name:
- International Journal of Evaluation and Research in Education (IJERE)
- Volume:
- 13
- Issue:
- 4
- ISSN:
- 2252-8822
- Page Range / eLocation ID:
- 2148; 2162
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Virtual laboratory utilization has been trending in STEM undergraduate curricula for over twenty years. A virtual laboratory is an interactive computer simulation that mimics real-world laboratory experiences in silico. Virtual labs are cost-effective pedagogical options for academic institutions that lack adequate funding for physical infrastructure and instrumentation. Virtual labs are an excellent proxy for lab activities threatening individual safety and public health. Further, during the COVID-19 pandemic, virtual labs were the primary pedagogical strategy for laboratory instruction. STEM faculty have developed numerous techniques for incorporating virtual labs into classroom and laboratory activities. New technology like artificial intelligence will expand virtual lab usability and effectiveness. Educational research demonstrates positive student outcomes and other benefits from virtual lab engagement. Continued effective mixed-methods research and production of essential virtual lab-based evaluation materials, such as discipline-specific rubrics, are needed to advance the application of this vital technology further. Moreover, from a software development perspective, many more virtual laboratories are needed in technology, engineering, mathematics, and specialized scientific fields.more » « less
-
In physical sciences and engineering research, the study of virtual labs (VL) has generally focused on case studies about their implementation into classrooms or engineering design process and elements. However, few (if any) studies have assessed the viability of using conventional course evaluation instruments (originally designed for traditional in-person classroom environments), to evaluate virtual lab classes. This article presents a preliminary set of results from a study that examines and compares engineering undergraduate students’ evaluations of a capstone mechanical and aerospace engineering laboratory course taught in two different environments: in-person and remotely (virtual/online environment). The instrument used in both cases was the conventional course evaluation instrument that was quantitative and designed using a Likert scale. The aim of this study is to understand how this instrument captures or does not capture the students’ perceptions of their learning of course content in virtual and in-person learning environments. The second aim of this study is to explore students’ perceptions of the effectiveness and acceptance of virtual learning tools and environments applied in engineering laboratory classes. A total of 226 undergraduate students participated in this convergent mixed method study within a mechanical and aerospace engineering department at a research-1 institute in the northeastern region of the United States. Our initial analyses of the students’ course evaluations indicate that there were no statistically significant differences in the perceived teaching effectiveness of the course. However, statistically significant differences were found between the course final grades between students who participated in the in-person lab juxtapose to those who engaged in the virtual laboratory environment. In addition, qualitative results suggest that students’ perceptions of the value of in-person and virtual labs vary depending on prior engineering experiences. These results suggest that there is room for improvement in conventional course evaluation instruments of senior capstone engineering education laboratories that take place either in-person or virtually.more » « less
-
A solid understanding of electromagnetic (E&M) theory is key to the education of electrical engineering students. However, these concepts are notoriously challenging for students to learn, due to the difficulty in grasping abstract concepts such as the electric force as an invisible force that is acting at a distance, or how electromagnetic radiation is permeating and propagating in space. Building physical intuition to manipulate these abstractions requires means to visualize them in a three-dimensional space. This project involves the development of 3D visualizations of abstract E&M concepts in Virtual Reality (VR), in an immersive, exploratory, and engaging environment. VR provides the means of exploration, to construct visuals and manipulable objects to represent knowledge. This leads to a constructivist way of learning, in the sense that students are allowed to build their own knowledge from meaningful experiences. In addition, the VR labs replace the cost of hands-on labs, by recreating the experiments and experiences on Virtual Reality platforms. The development of the VR labs for E&M courses involves four distinct phases: (I) Lab Design, (II) Experience Design, (III) Software Development, and (IV) User Testing. During phase I, the learning goals and possible outcomes are clearly defined, to provide context for the VR laboratory experience, and to identify possible technical constraints pertaining to the specific laboratory exercise. During stage II, the environment (the world) the player (user) will experience is designed, along with the foundational elements, such as ways of navigation, key actions, and immersion elements. During stage III, the software is generated as part of the course projects for the Virtual Reality course taught in the Computer Science Department at the same university, or as part of independent research projects involving engineering students. This reflects the strong educational impact of this project, as it allows students to contribute to the educational experiences of their peers. During phase IV, the VR experiences are played by different types of audiences that fit the player type. The team collects feedback and if needed, implements changes. The pilot VR Lab, introduced as an additional instructional tool for the E&M course during the Fall 2019, engaged over 100 students in the program, where in addition to the regular lectures, students attended one hour per week in the E&M VR lab. Student competencies around conceptual understanding of electromagnetism topics are measured via formative and summative assessments. To evaluate the effectiveness of VR learning, each lab is followed by a 10-minute multiple-choice test, designed to measure conceptual understanding of the various topics, rather than the ability to simply manipulate equations. This paper discusses the implementation and the pedagogy of the Virtual Reality laboratory experiences to visualize concepts in E&M, with examples for specific labs, as well as challenges, and student feedback with the new approach. We will also discuss the integration of the 3D visualizations into lab exercises, and the design of the student assessment tools used to assess the knowledge gain when the VR technology is employed.more » « less
-
This innovative practice paper describes how we implement active learning through collaborative online laboratory experiences as a work in progress. The goal of our project is to develop and implement various instructional tools and learning strategies in order to improve the quality of electrical engineering online labs. The applied strategies include integration of open-ended design experiences into lab work, accomplishing virtual teamwork, creating an online learning community and overcoming the isolation, incorporation of pre-lab simulations and videos. We believe that active learning labs will help students develop a deeper understanding, build self-confidence and improve critical thinking skills while increasing the sense of belonging in the field of engineering.more » « less
-
Long, Tammy (Ed.)In the laboratory-based disciplines, selection of a principal investigator (PI) and research laboratory (lab) indelibly shapes doctoral students’ experiences and educational outcomes. Framed by the theoretical concept of person–environment fit from within a socialization model, we use an inductive, qualitative approach to explore how a sample of 42 early-stage doctoral students enrolled in biological sciences programs made decisions about fitting with a PI and within a lab. Results illuminated a complex array of factors that students considered in selecting a PI, including PI relationship, mentoring style, and professional stability. Further, with regard to students’ lab selection, peers and research projects played an important role. Students actively conceptualized trade-offs among various dimensions of fit. Our findings also revealed cases in which students did not secure a position in their first (or second) choice labs and had to consider their potential fit with suboptimal placements (in terms of their initial assessments). Thus, these students weighted different factors of fit against the reality of needing to secure financial support to continue in their doctoral programs. We conclude by presenting and framing implications for students, PIs, and doctoral programs, and recommend providing transparency and candor around the PI and lab selection processes.more » « less