Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Trait variation across individuals and species influences the resistance and resilience of ecosystems to disturbance, and the ability of individuals to capitalize on postdisturbance conditions. In trees, the anatomical structure of xylem directly affects plant function and, consequently, it is a valuable lens through which to understand resistance and resilience to disturbance.To determine how hurricanes affect wood anatomy of tropical trees, we characterized a set of anatomical traits in wood produced before and after a major hurricane for 65 individuals of 10 Puerto Rican tree species. We quantified variation at different scales (among and within species, and within individuals) and determined trait shifts between the pre‐ and posthurricane periods. We also assessed correlations between traits and growth rates.While the majority of anatomical trait variation occurred among species, we also observed substantial variation within species and individuals. Within individuals, we found significant shifts for some traits that generally reflected increased hydraulic conductivity in the posthurricane period. We found weak evidence for an association between individual xylem anatomical traits and diameter growth rates.Ultimately, within‐individual variation of xylem anatomical traits observed in our study could be related to posthurricane recovery and overall growth (e.g. canopy filling). Other factors, however, likely decouple a relationship between xylem anatomy and diameter growth. While adjustments of wood anatomy may enable individual trees to capitalize on favourable postdisturbance conditions, these may also influence their future responses or vulnerability to subsequent disturbances. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
-
Abstract Severe droughts have led to lower plant growth and high mortality in many ecosystems worldwide, including tropical forests. Drought vulnerability differs among species, but there is limited consensus on the nature and degree of this variation in tropical forest communities. Understanding species‐level vulnerability to drought requires examination of hydraulic traits since these reflect the different strategies species employ for surviving drought.Here, we examined hydraulic traits and growth reductions during a severe drought for 12 common woody species in a wet tropical forest community in Puerto Rico to ask: Q1. To what extent can hydraulic traits predict growth declines during drought? We expected that species with more hydraulically vulnerable xylem and narrower safety margins (SMP50) would grow less during drought. Q2. How does species successional association relate to the levels of vulnerability to drought and hydraulic strategies? We predicted that early‐ and mid‐successional species would exhibit more acquisitive strategies, making them more susceptible to drought than shade‐tolerant species. Q3. What are the different hydraulic strategies employed by species and are there trade‐offs between drought avoidance and drought tolerance? We anticipated that species with greater water storage capacity would have leaves that lose turgor at higher xylem water potential and be less resistant to embolism forming in their xylem (P50).We found a large range of variation in hydraulic traits across species; however, they did not closely capture the magnitude of growth declines during drought. Among larger trees (≥10 cm diameter at breast height—DBH), some tree species with high xylem embolism vulnerability (P50) and risk of hydraulic failure (SMP50) experienced substantial growth declines during drought, but this pattern was not consistent across species. We found a trade‐off among species between drought avoidance (capacitance) and drought tolerating (P50) in this tropical forest community. Hydraulic strategies did not align with successional associations. Instead, some of the more drought‐vulnerable species were shade‐tolerant dominants in the community, suggesting that a drying climate could lead to shifts in long‐term forest composition and function in Puerto Rico and the Caribbean. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
-
Summary Rapid changes in climate and disturbance regimes, including droughts and hurricanes, are likely to influence tropical forests, but our understanding of the compound effects of disturbances on forest ecosystems is extremely limited. Filling this knowledge gap is necessary to elucidate the future of these ecosystems under a changing climate.We examined the relationship between hurricane response (damage, mortality, and resilience) and four hydraulic traits of 13 dominant woody species in a wet tropical forest subject to periodic hurricanes.Species with high resistance to embolisms (lowP50values) and higher safety margins () were more resistant to immediate hurricane mortality and breakage, whereas species with higher hurricane resilience (rapid post‐hurricane growth) had high capacitance andP50values and low . During 26 yr of post‐hurricane recovery, we found a decrease in community‐weighted mean values for traits associated with greater drought resistance (leaf turgor loss point,P50, ) and an increase in capacitance, which has been linked with lower drought resistance.Hurricane damage favors slow‐growing, drought‐tolerant species, whereas post‐hurricane high resource conditions favor acquisitive, fast‐growing but drought‐vulnerable species, increasing forest productivity at the expense of drought tolerance and leading to higher overall forest vulnerability to drought.more » « less
An official website of the United States government
