skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Shifts in wood anatomical traits after a major hurricane
Abstract Trait variation across individuals and species influences the resistance and resilience of ecosystems to disturbance, and the ability of individuals to capitalize on postdisturbance conditions. In trees, the anatomical structure of xylem directly affects plant function and, consequently, it is a valuable lens through which to understand resistance and resilience to disturbance.To determine how hurricanes affect wood anatomy of tropical trees, we characterized a set of anatomical traits in wood produced before and after a major hurricane for 65 individuals of 10 Puerto Rican tree species. We quantified variation at different scales (among and within species, and within individuals) and determined trait shifts between the pre‐ and posthurricane periods. We also assessed correlations between traits and growth rates.While the majority of anatomical trait variation occurred among species, we also observed substantial variation within species and individuals. Within individuals, we found significant shifts for some traits that generally reflected increased hydraulic conductivity in the posthurricane period. We found weak evidence for an association between individual xylem anatomical traits and diameter growth rates.Ultimately, within‐individual variation of xylem anatomical traits observed in our study could be related to posthurricane recovery and overall growth (e.g. canopy filling). Other factors, however, likely decouple a relationship between xylem anatomy and diameter growth. While adjustments of wood anatomy may enable individual trees to capitalize on favourable postdisturbance conditions, these may also influence their future responses or vulnerability to subsequent disturbances. Read the freePlain Language Summaryfor this article on the Journal blog.  more » « less
Award ID(s):
1831952
PAR ID:
10469024
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Functional Ecology
Volume:
37
Issue:
12
ISSN:
0269-8463
Format(s):
Medium: X Size: p. 3000-3014
Size(s):
p. 3000-3014
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Severe droughts have led to lower plant growth and high mortality in many ecosystems worldwide, including tropical forests. Drought vulnerability differs among species, but there is limited consensus on the nature and degree of this variation in tropical forest communities. Understanding species‐level vulnerability to drought requires examination of hydraulic traits since these reflect the different strategies species employ for surviving drought.Here, we examined hydraulic traits and growth reductions during a severe drought for 12 common woody species in a wet tropical forest community in Puerto Rico to ask: Q1. To what extent can hydraulic traits predict growth declines during drought? We expected that species with more hydraulically vulnerable xylem and narrower safety margins (SMP50) would grow less during drought. Q2. How does species successional association relate to the levels of vulnerability to drought and hydraulic strategies? We predicted that early‐ and mid‐successional species would exhibit more acquisitive strategies, making them more susceptible to drought than shade‐tolerant species. Q3. What are the different hydraulic strategies employed by species and are there trade‐offs between drought avoidance and drought tolerance? We anticipated that species with greater water storage capacity would have leaves that lose turgor at higher xylem water potential and be less resistant to embolism forming in their xylem (P50).We found a large range of variation in hydraulic traits across species; however, they did not closely capture the magnitude of growth declines during drought. Among larger trees (≥10 cm diameter at breast height—DBH), some tree species with high xylem embolism vulnerability (P50) and risk of hydraulic failure (SMP50) experienced substantial growth declines during drought, but this pattern was not consistent across species. We found a trade‐off among species between drought avoidance (capacitance) and drought tolerating (P50) in this tropical forest community. Hydraulic strategies did not align with successional associations. Instead, some of the more drought‐vulnerable species were shade‐tolerant dominants in the community, suggesting that a drying climate could lead to shifts in long‐term forest composition and function in Puerto Rico and the Caribbean. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  2. Abstract Plant functional strategies change considerably as plants develop, driven by intraindividual variability in anatomical, morphological, physiological and architectural traits.Developmental trait variation arises through the complex interplay among genetically regulated phase change (i.e. ontogeny), increases in plant age and size, and phenotypic plasticity to changing environmental conditions. Although spatial drivers of intraspecific trait variation have received extensive research attention, developmentally driven intraspecific trait variation is largely overlooked, despite widespread occurrence.Ontogenetic trait variation is genetically regulated, leads to dramatic changes in plant phenotypes and evolves in response to predictable changes in environmental conditions as plants develop.Evidence has accumulated to support a general shift from fast to slow relative growth rates and from shade to sun leaves as plants develop from the highly competitive but shady juvenile niche to the stressful adult niche in the systems studied to date.Nonetheless, there are major gaps in our knowledge due to examination of only a few environmental factors selecting for the evolution of ontogenetic trajectories, variability in how ontogeny is assigned, biogeographic sampling biases on trees in temperate biomes, dependencies on a few broadly sampled leaf morphological traits and a lack of longitudinal studies that track ontogeny within individuals. Filling these gaps will enhance our understanding of plant functional ecology and provide a framework for predicting the effects of global change threats that target specific ontogenetic stages. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  3. Abstract Climate change is stressing many forests around the globe, yet some tree species may be able to persist through acclimation and adaptation to new environmental conditions. The ability of a tree to acclimate during its lifetime through changes in physiology and functional traits, defined here as its acclimation potential, is not well known.We investigated the acclimation potential of trembling aspenPopulus tremuloidesand ponderosa pinePinus ponderosatrees by examining within‐species variation in drought response functional traits across both space and time, and how trait variation influences drought‐induced tree mortality. We measured xylem tension, morphological traits and physiological traits on mature trees in southwestern Colorado, USA across a climate gradient that spanned the distribution limits of each species and 3 years with large differences in climate.Trembling aspen functional traits showed high within‐species variation, and osmotic adjustment and carbon isotope discrimination were key determinants for increased drought tolerance in dry sites and in dry years. However, trembling aspen trees at low elevation were pushed past their drought tolerance limit during the severe 2018 drought year, as elevated mortality occurred. Higher specific leaf area during drought was correlated with higher percentages of canopy dieback the following year. Ponderosa pine functional traits showed less within‐species variation, though osmotic adjustment was also a key mechanism for increased drought tolerance. Remarkably, almost all traits varied more year‐to‐year than across elevation in both species.Our results shed light on the scope and limits of intraspecific trait variation for mediating drought responses in key southwestern US tree species and will help improve our ability to model and predict forest responses to climate change. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  4. Abstract Soil nutrients and water availability are strong drivers of tropical tree species distribution across scales. However, the physiological mechanisms underlying environmental filtering along these gradients remain incompletely understood. Previous studies mostly focused on univariate variation in structural traits, but a more integrative approach combining multiple physiological traits is needed to fully portray species functional strategies.We measured nine leaf functional traits related to trees' resource capture and hydraulic strategies for 552 individuals belonging to 21 tropical tree species across an environmental gradient in Amazonian forests. Our sampling included generalist and specialist species fromterra firme(TF) and seasonally flooded (SF) forests. We tested the influence of the topographic wetness index, a proxy for soil moisture and nutrient gradients, on each trait separately and on the trait integration through multivariate indices computed from the eigenvalues of a principal component analysis on the traits of the species. Finally, we evaluated intraspecific trait variability (ITV) for generalists and specialists by calculating the coefficient of variation for each trait.Results showed that (1) the environment had a greater influence on trait syndromes than single trait variation. Moreover, (2) SF specialist species expressed a stronger leaf trait coordination than TF specialist species. Furthermore, (3) the ability of generalist species to occupy a broader range of environments was not reflected by a larger ITV than specialist species but by the capacity to change trait coordination across environments.Our work highlights the need to investigate functional strategies as multidimensional syndromes in physiological trait space to fully understand and predict species distribution along environmental gradients. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  5. Summary There is a long‐standing idea that the timing of leaf production in seasonally cold climates is linked to xylem anatomy, specifically vessel diameter because of the hydraulic requirements of expanding leaves.We tested for a relationship between the timing of leaf out and vessel diameter in 220 plants in three common gardens accounting for species’ phylogenetic relationships. We investigated how vessel diameter related to wood porosity, plant height and leaf length. We also used dye perfusion tests to determine whether plants relied on xylem produced during the previous growing season at the time of leaf out.In all three gardens, there was later leaf out in species with wider vessels. Ring‐porous species had the widest vessels, exhibited latest leaf out and relied less on xylem made during the previous growing season than diffuse‐porous species. Wood anatomy and leaf phenology did not exhibit a phylogenetic signal.The timing of leaf out is correlated with wood anatomy across species regardless of species’ geographic origin and phylogenetic relationships. This correlation could be a result of developmental and physiological links between leaves and wood or tied to a larger safety efficiency trade‐off. 
    more » « less