skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fattah, Mara"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The misfolding, aggregation, and spread of tau protein fibrils underlie tauopathies, a diverse class of neurodegenerative diseases for which effective treatments remain elusive. Among these are corticobasal dementia (CBD) and progressive supranuclear palsy (PSP), canonical examples of 4-repeat (4R) tauopathies characterized by tau isoforms exclusively with four microtubule-binding repeat domains. We target this 4R tau isoform-specific mechanism by focusing on misfolded tau’s distinctive stem-loop-stem structural motif formed by the junction of the 4R-defining alternatively spliced exon and the adjacent constitutive exon. A synthetic peptide based on this stem-loop-stem sequence can induce aggregation and spread in an isoform-specific manner. Here, we develop a protein-like polymer (PLP) in which multiple copies of this synthetic peptide form a brush-like structure capable of preventing tau aggregation by binding and capping fibril endsin vitro, in human brain organoids, and in cellular models with an EC50 of 105 ± 14 nM. PLPs demonstrate robust activity against fibrils derived from CBD and PSP patient brains and a PS19 mouse tauopathy model. Previous tau-targeted treatments have primarily focused on broad tau clearance, aggregation inhibition, or microtubule stabilization, often lacking isoform specificity and precision. In contrast, this approach targets the 4R tau isoform’s unique structural motif, offering a tailored therapeutic intervention for diseases like CBD and PSP. Supported by prior studies showing blood-brain barrier penetrance and safety profiles, this tau-binding PLP offers a promising translational path toward clinical applications in tauopathy treatment. 
    more » « less
    Free, publicly-accessible full text available February 3, 2026
  2. Abstract Successful and selective inhibition of the cytosolic protein‐protein interaction (PPI) between nuclear factor erythroid 2‐related factor 2 (Nrf2) and Kelch‐like ECH‐associating protein 1 (Keap1) can enhance the antioxidant response, with the potential for a therapeutic effect in a range of settings including in neurodegenerative disease (ND). Small molecule inhibitors have been developed, yet many have off‐target effects, or are otherwise limited by poor cellular permeability. Peptide‐based strategies have also been attempted to enhance specificity, yet face challenges due to susceptibility to degradation and lack of cellular penetration. Herein, these barriers are overcome utilizing a polymer‐based proteomimetics. The protein‐like polymer (PLP) consists of a synthetic, lipophilic polymer backbone displaying water soluble Keap1‐binding peptides on each monomer unit forming a brush polymer architecture. The PLPs are capable of engaging Keap1 and displacing the cellular protective transcription factor Nrf2, which then translocates to the nucleus, activating the antioxidant response element (ARE). PLPs exhibit increased Keap1 binding affinity by several orders of magnitude compared to free peptides, maintain serum stability, are cell‐penetrant, and selectively activate the ARE pathway in cells, including in primary cortical neuronal cultures. Keap1/Nrf2‐inhibitory PLPs have the potential to impact the treatment of disease states associated with dysregulation of oxidative stress, such as NDs. 
    more » « less