Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This study presents calculations for cross sections of the vibrational excitation of H2O (X1A1) via electron impact. The theoretical approach employed here is based on first principles only, combining electron-scattering calculations performed using the UK R-matrix codes for several geometries of the target molecule, three-dimensional (3D) vibrational states of H2O, and 3D vibrational frame transformation. The aim is to represent the scattering matrix for the electron incident of the molecule. The vibrational wave functions were obtained numerically, without the normal-mode approximation, so that the interactions and transitions between vibrational states assigned to different normal modes could be accounted for. The thermally averaged rate coefficients were derived from the calculated cross sections for temperatures in the 10–10 000 K interval and analytical fits for rate coefficients were also provided. We assessed the uncertainty estimations of the obtained data for subsequent applications of the rate coefficients in modelling the non-local thermal equilibrium (non-LTE) spectra of water in various astrophysical environments.more » « lessFree, publicly-accessible full text available July 1, 2025
-
Abstract At centimeter wavelengths, single-dish observations have suggested that the Sagittarius (Sgr) B2 molecular cloud at the Galactic Center hosts weak maser emission from several organic molecules, including CH2NH, HNCNH, and HCOOCH3. However, the lack of spatial distribution information on these new maser species has prevented us from assessing the excitation conditions of the maser emission as well as their pumping mechanisms. Here, we present a mapping study toward Sgr B2 north (N) to locate the region where the complex maser emission originates. We report the first detection of the Class I methanol (CH3OH) maser at 84 GHz and the first interferometric map of the methanimine (CH2NH) maser at 5.29 GHz toward this region. In addition, we present a tool for modeling and fitting the unsaturated molecular maser signals with non-LTE radiative transfer models and Bayesian analysis using the Markov Chain Monte Carlo approach. These enable us to quantitatively assess the observed spectral profiles. The results suggest a two-chain-clump model for explaining the intense CH3OH Class I maser emission toward a region with low continuum background radiation. By comparing the spatial origin and extent of maser emission from several molecular species, we find that the 5.29 GHz CH2NH maser has a close spatial relationship with the 84 GHz CH3OH Class I masers. This relationship serves as observational evidence to suggest a similar collisional pumping mechanism for these maser transitions.
-
Cross-sections and thermally averaged rate coefficients for vibration (de-)excitation of a water molecule by electron impact are computed; one and two quanta excitations are considered for all three normal modes. The calculations use a theoretical approach that combines the normal mode approximation for vibrational states of water, a vibrational frame transformation employed to evaluate the scattering matrix for vibrational transitions and the UK molecular R-matrix code. The interval of applicability of the rate coefficients is from 10 to 10,000 K. A comprehensive set of calculations is performed to assess uncertainty of the obtained data. The results should help in modelling non-LTE spectra of water in various astrophysical environments.more » « less