Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Cross sections and thermally averaged rate coefficients for the vibrational excitation and de-excitation by electron impact on the HDO molecule are computed using a theoretical approach based entirely on first principles. This approach combines scattering matrices obtained from the UK R-matrix codes for various geometries of the target molecule, three-dimensional vibrational states of HDO, and the vibrational frame transformation. The vibrational states of the molecule are evaluated by solving the Schrödinger equation numerically, without relying on the normal-mode approximation, which is known to be inaccurate for water molecules. As a result, couplings and transitions between the vibrational states of HDO are accurately accounted for. From the calculated cross sections, thermally averaged rate coefficients and their analytical fits are provided. Significant differences between the results for HDO and H2O are observed. Additionally, an uncertainty assessment of the obtained data is performed for potential use in modeling non-local thermodynamic equilibrium (non-LTE) spectra of water in various astrophysical environments.more » « lessFree, publicly-accessible full text available April 8, 2026
-
This study presents calculations for cross sections of the vibrational excitation of H2O (X1A1) via electron impact. The theoretical approach employed here is based on first principles only, combining electron-scattering calculations performed using the UK R-matrix codes for several geometries of the target molecule, three-dimensional (3D) vibrational states of H2O, and 3D vibrational frame transformation. The aim is to represent the scattering matrix for the electron incident of the molecule. The vibrational wave functions were obtained numerically, without the normal-mode approximation, so that the interactions and transitions between vibrational states assigned to different normal modes could be accounted for. The thermally averaged rate coefficients were derived from the calculated cross sections for temperatures in the 10–10 000 K interval and analytical fits for rate coefficients were also provided. We assessed the uncertainty estimations of the obtained data for subsequent applications of the rate coefficients in modelling the non-local thermal equilibrium (non-LTE) spectra of water in various astrophysical environments.more » « less
-
Context.Ever since they were first detected in the interstellar medium, the radio wavelength (3.3 GHz) hyperfine-structure splitting transitions in the rotational ground state of CH were observed to show anomalous excitation. Astonishingly, this behaviour was uniformly observed towards a variety of different sources probing a wide range of physical conditions. While the observed level inversion could be explained globally by a pumping scheme involving collisions, a description of the extent of ‘over-excitation’ observed in individual sources required the inclusion of radiative processes, involving transitions at higher rotational levels. Therefore, a complete description of the excitation mechanism in the CH ground state, observed towards individual sources entails observational constraints from the rotationally excited levels of CH and in particular that of its first rotationally excited state (2Π3/2,N= 1,J= 3/2). Aims.Given the limited detections of these lines, the objective of this work is to characterise the physical and excitation properties of the rotationally excited lines of CH between the Λ-doublet levels of its2Π3/2,N= 1,J= 3/2 state near 700 MHz, and investigate their influence on the pumping mechanisms of the ground-state lines of CH. Methods.This work presents the first interferometric search for the rotationally excited lines of CH between the Λ-doublet levels of its2Π3/2,N= 1,J= 3/2 state near 700 MHz carried out using the upgraded Giant Metrewave Radio Telescope (uGMRT) array towards six star-forming regions, W51 E, Sgr B2 (M), M8, M17, W43, and DR21 Main. Results.We detected the two main hyperfine structure lines within the first rotationally excited state of CH, in absorption towards W51 E. To jointly model the physical and excitation conditions traced by lines from both the ground and first rotationally excited states of CH, we performed non-local thermodynamic equilibrium (LTE) radiative transfer calculations using the code MOLPOP-CEP. These models account for the effects of line overlap and are aided by column density constraints from the far-infrared (FIR) wavelength rotational transitions of CH that connect to the ground state and use collisional rate coefficients for collisions of CH with H, H2and electrons (the latter was computed in this work using cross-sections estimated within the Born approximation). Conclusions.The non-LTE analysis revealed that physical properties typical of diffuse and translucent clouds best reproduced the higher rates of level inversion seen in the ground-state lines at 3.3 GHz, observed at velocities near 66 km s−1along the sightline towards W51 E. In contrast, the excited lines near 700 MHz were only excited in much denser environments withnH~ 105cm−3towards which the anomalous excitation in two of the three ground state lines is quenched, but not in the 3.264 GHz line. This is in alignment with our observations and suggests that while FIR pumping and line overlap effects are essential for exciting and producing line inversion in the ground state, excitation to the first rotational level is dominated by collisional excitation from the ground state. For the rotationally excited state of CH, the models indicated low excitation temperatures and column densities of 2 × 1014cm−2. Furthermore, modelling these lines helps us understand the complexities of the spectral features observed in the 532/536 GHz rotational transitions of CH. These transitions, connecting sub-levels of the first rotationally excited state to the ground state, play a crucial role in trapping FIR radiation and enhancing the degree of inversion seen in the ground state lines. Based on the physical conditions constrained, we predict the potential of detecting hyperfine-splitting transitions arising from higher rotationally excited transitions of CH in the context of their current non-detections.more » « less
-
Abstract At centimeter wavelengths, single-dish observations have suggested that the Sagittarius (Sgr) B2 molecular cloud at the Galactic Center hosts weak maser emission from several organic molecules, including CH2NH, HNCNH, and HCOOCH3. However, the lack of spatial distribution information on these new maser species has prevented us from assessing the excitation conditions of the maser emission as well as their pumping mechanisms. Here, we present a mapping study toward Sgr B2 north (N) to locate the region where the complex maser emission originates. We report the first detection of the Class I methanol (CH3OH) maser at 84 GHz and the first interferometric map of the methanimine (CH2NH) maser at 5.29 GHz toward this region. In addition, we present a tool for modeling and fitting the unsaturated molecular maser signals with non-LTE radiative transfer models and Bayesian analysis using the Markov Chain Monte Carlo approach. These enable us to quantitatively assess the observed spectral profiles. The results suggest a two-chain-clump model for explaining the intense CH3OH Class I maser emission toward a region with low continuum background radiation. By comparing the spatial origin and extent of maser emission from several molecular species, we find that the 5.29 GHz CH2NH maser has a close spatial relationship with the 84 GHz CH3OH Class I masers. This relationship serves as observational evidence to suggest a similar collisional pumping mechanism for these maser transitions.more » « less
-
Cross-sections and thermally averaged rate coefficients for vibration (de-)excitation of a water molecule by electron impact are computed; one and two quanta excitations are considered for all three normal modes. The calculations use a theoretical approach that combines the normal mode approximation for vibrational states of water, a vibrational frame transformation employed to evaluate the scattering matrix for vibrational transitions and the UK molecular R-matrix code. The interval of applicability of the rate coefficients is from 10 to 10,000 K. A comprehensive set of calculations is performed to assess uncertainty of the obtained data. The results should help in modelling non-LTE spectra of water in various astrophysical environments.more » « less
An official website of the United States government
