Abstract We report the discovery of nine new hot molecular cores in the Deep South (DS) region of Sagittarius B2 using Atacama Large Millimeter/submillimeter Array Band 6 observations. We measure the rotational temperature of CH3OH and derive the physical conditions present within these cores and the hot core Sgr B2(S). The cores show heterogeneous temperature structure, with peak temperatures between 252 and 662 K. We find that the cores span a range of masses (203–4842M⊙) and radii (3587–9436 au). CH3OH abundances consistently increase with temperature across the sample. Our measurements show the DS hot cores are structurally similar to Galactic disk hot cores, with radii and temperature gradients that are comparable to sources in the disk. They also show shallower density gradients than disk hot cores, which may arise from the Central Molecular Zone’s higher density threshold for star formation. The hot cores have properties which are consistent with those of Sgr B2(N), with three associated with Class II CH3OH masers and one associated with an ultra-compact Hiiregion. Our sample nearly doubles the high-mass star-forming gas mass near Sgr B2(S) and suggests the region may be a younger, comparably massive counterpart to Sgr B2(N) and (M). The relationship between peak CH3OH abundance and rotational temperature traced by our sample and a selection of comparable hot cores is qualitatively consistent with predictions from chemical modeling. However, we observe constant peak abundances at higher temperatures (T≳ 250 K), which may indicate mechanisms for methanol survival that are not yet accounted for in models.
more »
« less
Maser Activity of Organic Molecules toward Sgr B2(N)
Abstract At centimeter wavelengths, single-dish observations have suggested that the Sagittarius (Sgr) B2 molecular cloud at the Galactic Center hosts weak maser emission from several organic molecules, including CH2NH, HNCNH, and HCOOCH3. However, the lack of spatial distribution information on these new maser species has prevented us from assessing the excitation conditions of the maser emission as well as their pumping mechanisms. Here, we present a mapping study toward Sgr B2 north (N) to locate the region where the complex maser emission originates. We report the first detection of the Class I methanol (CH3OH) maser at 84 GHz and the first interferometric map of the methanimine (CH2NH) maser at 5.29 GHz toward this region. In addition, we present a tool for modeling and fitting the unsaturated molecular maser signals with non-LTE radiative transfer models and Bayesian analysis using the Markov Chain Monte Carlo approach. These enable us to quantitatively assess the observed spectral profiles. The results suggest a two-chain-clump model for explaining the intense CH3OH Class I maser emission toward a region with low continuum background radiation. By comparing the spatial origin and extent of maser emission from several molecular species, we find that the 5.29 GHz CH2NH maser has a close spatial relationship with the 84 GHz CH3OH Class I masers. This relationship serves as observational evidence to suggest a similar collisional pumping mechanism for these maser transitions.
more »
« less
- Award ID(s):
- 2205126
- PAR ID:
- 10510758
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 967
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 164
- Size(s):
- Article No. 164
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present high-resolution (∼2–3″; ∼0.1 pc) radio observations of the Galactic center cloud M0.10−0.08 using the Very Large Array at K and Ka band (∼25 and 36 GHz). The M0.10−0.08 cloud is located in a complex environment near the Galactic center Radio Arc and the adjacent M0.11−0.11 molecular cloud. From our data, M0.10−0.08 appears to be a compact molecular cloud (∼3 pc) that contains multiple compact molecular cores (5+; <0.4 pc). In this study, we detect a total of 15 molecular transitions in M0.10−0.08 from the following molecules: NH 3 , HC 3 N, CH 3 OH, HC 5 N, CH 3 CN, and OCS. We have identified more than sixty 36 GHz CH 3 OH masers in M0.10−0.08 with brightness temperatures above 400 K and 31 maser candidates with temperatures between 100 and 400 K. We conduct a kinematic analysis of the gas using NH 3 and detect multiple velocity components toward this region of the Galactic center. The bulk of the gas in this region has a velocity of 51.5 km s −1 (M0.10−0.08) with a lower-velocity wing at 37.6 km s −1 . We also detect a relatively faint velocity component at 10.6 km s −1 that we attribute to being an extension of the M0.11−0.11 cloud. Analysis of the gas kinematics, combined with past X-ray fluorescence observations, suggests M0.10−0.08 and M0.11−0.11 are located in the same vicinity of the Galactic center and could be physically interacting.more » « less
-
Context. Numerous complex organic molecules have been detected in the universe and among them are amides, which are considered as prime models for species containing a peptide linkage. In its backbone, acrylamide (CH 2 CHC(O)NH 2 ) bears not only the peptide bond, but also the vinyl functional group that is a common structural feature in many interstellar compounds. This makes acrylamide an interesting candidate for searches in the interstellar medium. In addition, a tentative detection of the related molecule propionamide (C 2 H 5 C(O)NH 2 ) has been recently claimed toward Sgr B2(N). Aims. The aim of this work is to extend the knowledge of the laboratory rotational spectrum of acrylamide to higher frequencies, which would make it possible to conduct a rigorous search for interstellar signatures of this amide using millimeter wave astronomy. Methods. We measured and analyzed the rotational spectrum of acrylamide between 75 and 480 GHz. We searched for emission of acrylamide in the imaging spectral line survey ReMoCA performed with the Atacama Large Millimeter/submillimeter Array toward Sgr B2(N). We also searched for propionamide in the same source. The astronomical spectra were analyzed under the assumption of local thermodynamic equilibrium. Results. We report accurate laboratory measurements and analyses of thousands of rotational transitions in the ground state and two excited vibrational states of the most stable syn form of acrylamide. In addition, we report an extensive set of rotational transitions for the less stable skew conformer. Tunneling through a low energy barrier between two symmetrically equivalent configurations has been revealed for this higher-energy species. Neither acrylamide nor propionamide were detected toward the two main hot molecular cores of Sgr B2(N). We did not detect propionamide either toward a position located to the east of the main hot core, thereby undermining the recent claim of its interstellar detection toward this position. We find that acrylamide and propionamide are at least 26 and 14 times less abundant, respectively, than acetamide toward the main hot core Sgr B2(N1S), and at least 6 and 3 times less abundant, respectively, than acetamide toward the secondary hot core Sgr B2(N2). Conclusions. A comparison with results of astrochemical kinetics model for related species suggests that acrylamide may be a few hundred times less abundant than acetamide, corresponding to a value that is at least an order of magnitude lower than the observational upper limits. Propionamide may be as little as only a factor of two less abundant than the upper limit derived toward Sgr B2(N1S). Lastly, the spectroscopic data presented in this work will aid future searches of acrylamide in space.more » « less
-
Abstract We present Atacama Large Millimeter Array band 6/7 (1.3 mm/0.87 mm) and Very Large Array Ka-band (9 mm) observations toward NGC 2071 IR, an intermediate-mass star-forming region. We characterize the continuum and associated molecular line emission toward the most luminous protostars, i.e., IRS1 and IRS3, on ∼100 au (0.″2) scales. IRS1 is partly resolved in the millimeter and centimeter continuum, which shows a potential disk. IRS3 has a well-resolved disk appearance in the millimeter continuum and is further resolved into a close binary system separated by ∼40 au at 9 mm. Both sources exhibit clear velocity gradients across their disk major axes in multiple spectral lines including C18O, H2CO, SO, SO2, and complex organic molecules like CH3OH,13CH3OH, and CH3OCHO. We use an analytic method to fit the Keplerian rotation of the disks and give constraints on physical parameters with a Markov Chain Monte Carlo routine. The IRS3 binary system is estimated to have a total mass of 1.4–1.5M⊙. IRS1 has a central mass of 3–5M⊙based on both kinematic modeling and its spectral energy distribution, assuming that it is dominated by a single protostar. For both IRS1 and IRS3, the inferred ejection directions from different tracers, including radio jet, water maser, molecular outflow, and H2emission, are not always consistent, and for IRS1 these can be misaligned by ∼50°. IRS3 is better explained by a single precessing jet. A similar mechanism may be present in IRS1 as well but an unresolved multiple system in IRS1 is also possible.more » « less
-
Abstract The study of the interaction between ionized jets, molecular outflows, and their environments is critical to understanding high-mass star formation, especially because jets and outflows are thought to be key in the transfer of angular momentum outward from accretion disks. We report a low spectral resolution Karl G. Jansky Very Large Array (VLA) survey for OH, NH3, CH3OH, and hydrogen radio recombination lines, toward a sample of 58 high-mass star-forming regions that contain numerous ionized jet candidates. The observations are from a survey designed to detect radio continuum; the novel aspect of this work is to search for spectral lines in broadband VLA data (we provide the script developed in this work to facilitate exploration of other data sets). We report detection of 25 GHz CH3OH transitions toward 10 sources; 5 of them also show NH3emission. We found that most of the sources detected in CH3OH and NH3have been classified as ionized jets or jet candidates and that the emission lines are coincident with, or very near (≲0.1 pc), these sources; hence, these molecular lines could be used as probes of the environment near the launching site of jets/outflows. No radio recombination lines were detected, but we found that the rms noise of stacked spectra decreases following the radiometer equation. Therefore, detecting radio recombination lines in a sample of brighter free–free continuum sources should be possible. This work demonstrates the potential of broadband VLA continuum observations as low resolution spectral-line scans.more » « less
An official website of the United States government
