skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fechisin, Christopher"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Despite growing interest in beyond-group symmetries in quantum condensed matter systems, there are relatively few microscopic lattice models explicitly realizing these symmetries, and many phenomena have yet to be studied at the microscopic level. We introduce a one-dimensional stabilizer Hamiltonian composed of group-based Pauli operators whose ground state is a G × Rep ( G ) -symmetric state: the G -cluster state introduced by Brell []. We show that this state lies in a symmetry-protected topological (SPT) phase protected by G × Rep ( G ) symmetry, distinct from the symmetric product state by a duality argument. We identify several signatures of SPT order, namely, protected edge modes, string order parameters, and topological response. We discuss how G -cluster states may be used as a universal resource for measurement-based quantum computation, explicitly working out the case where G is a semidirect product of Abelian groups. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available March 1, 2026