skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Fedorov, Alexey"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 6, 2025
  2. Free, publicly-accessible full text available January 1, 2025
  3. Abstract

    Interconnections between ocean basins are recognized as an important driver of climate variability. Recent modeling evidence suggests that the North Atlantic climate can respond to persistent warming of the tropical Indian Ocean sea surface temperature (SST) relative to the rest of the tropics (rTIO). Here, we use observational data to demonstrate that multi-decadal changes in pantropical ocean temperature gradients lead to variations of an SST-based proxy of the Atlantic Meridional Overturning Circulation (AMOC). The largest contribution to this temperature gradient-AMOCconnection comes from gradients between the Indian and Atlantic Oceans. TherTIOindex yields the strongest connection of this tropical temperature gradient to theAMOC. Focusing on the internally generated signal in three observational products reveals that an SST-basedAMOCproxy index has closely followed low-frequency changes ofrTIOtemperature with about 26-year lag since 1870. Analyzing the pre-industrial control simulations of 44 CMIP6 climate models shows that theAMOCproxy index lags simulated mid-latitudeAMOCvariations by 4 ± 4 years. These model simulations reveal the mechanism connectingAMOCvariations to pantropical ocean temperature gradients at a 27 ± 2 years lag, matching the observed time lag in 28 out of the 44 analyzed models. rTIO temperature changes affect the North Atlantic climate through atmospheric planetary waves, impacting temperature and salinity in the subpolar North Atlantic, which modifies deep convection and ultimately the AMOC. Through this mechanism, observed internalrTIOvariations can serve as a multi-decadal precursor ofAMOCchanges with important implications forAMOCdynamics and predictability.

     
    more » « less
  4. Abstract

    The present-day deep ocean global meridional overturning circulation is dominated by the Atlantic meridional overturning circulation (AMOC), with dense water sinking in the high-latitude North Atlantic Ocean. In contrast, deep-water formation in the subarctic North Pacific is inhibited by a strong upper-ocean halocline, which prevents the development of an analogous Pacific meridional overturning circulation (PMOC). Nevertheless, paleoclimate evidence suggests that a PMOC with deep-water formation in the North Pacific was active, for instance, during the warm Pliocene epoch and possibly during the most recent deglaciation. In the present study, we describe a spontaneous activation of the PMOC in a multimillennial abrupt 4 × CO2experiment using one of the configurations of the Community Earth System Model (CESM1). Soon after the imposed CO2increase, the model’s AMOC collapses and remains in a weakened state for several thousand years. The PMOC emerges after some 2500 years of integration, persists for about 1000 years, reaching nearly 10 Sv (1 Sv ≡ 106m3s−1), but eventually declines to about 5 Sv. The PMOC decline follows the AMOC recovery in the model, consistent with an Atlantic–Pacific interbasin seesaw. The PMOC activation relies on two factors: (i) gradual warming and freshening of the North Pacific deep ocean, which reduces ocean vertical stratification on millennial time scales, and (ii) upper-ocean salinity increase in the subarctic North Pacific over several centuries, followed by a rapid erosion of the pycnocline and activation of deep-water formation. Ultimately, our results provide insights on the characteristics of global ocean overturning in warm climates.

     
    more » « less
  5. Abstract

    The evolution of tropical sea surface temperatures (SSTs) in response to greenhouse warming is of great societal and scientific interest. Most state‐of‐the‐art climate models predict a mean “El Niño‐like” warming pattern by century‐end, characterized by greater warming over the Pacific cold tongue compared to the western warm pool. However, it is unclear which proposed mechanism dominates in this response. Here, we present partially coupled abrupt CO2doubling experiments in which surface wind stress and shortwave heating are overridden to values from a control simulation. Contrary to previous studies, we find that experiments with overriding of surface wind stress exhibit only 58% of the full reduction in east‐west SST contrast. When both surface wind stress and shortwave flux are overridden, only 34% of the full reduction remains, controlled by spatially‐varying evaporative cooling. These results underscore the importance of Bjerknes and shortwave feedbacks in the tropical Pacific SST response to global warming.

     
    more » « less
  6. Abstract CO 2 -forced surface warming in general circulation models (GCMs) is initially polar amplified in the Arctic but not in the Antarctic—a largely hemispherically antisymmetric signal. Nevertheless, we show in CESM1 and 11 LongRunMIP GCMs that the hemispherically symmetric component of global-mean-normalized, zonal-mean warming ( ) under 4 × CO 2 changes weakly or becomes modestly more polar amplified from the first decade to near-equilibrium. Conversely, the antisymmetric warming component ( ) weakens with time in all models, modestly in some including FAMOUS, but effectively vanishing in others including CESM1. We explore mechanisms underlying the robust behavior with a diffusive moist energy balance model (MEBM), which given radiative feedback parameter ( λ ) and ocean heat uptake ( ) fields diagnosed from CESM1 adequately reproduces the CESM1 and fields. In further MEBM simulations perturbing λ and , is sensitive to their symmetric components only, and more to that of λ . A three-box, two-time-scale model fitted to FAMOUS and CESM1 reveals a curiously short Antarctic fast-response time scale in FAMOUS. In additional CESM1 simulations spanning a broader range of forcings, changes modestly across 2–16 × CO 2 , and in a Pliocene-like simulation is more polar amplified but likewise approximately time invariant. Determining the real-world relevance of these behaviors—which imply that a surprising amount of information about near-equilibrium polar amplification emerges within decades—merits further study. 
    more » « less
  7. Molecular doping can increase the conductivity of organic semiconductors and plays an increasingly important role in emerging and established plastic electronics applications. 4-(1,3-Dimethyl-2,3-dihydro-1 H -benzimidazol-2-yl)- N , N -dimethylaniline (N-DMBI-H) and tris(pentafluorophenyl)borane (BCF) are established n- and p-dopants, respectively, but neither functions as a simple one-electron redox agent. Molecular hydrogen has been suggested to be a byproduct in several proposed mechanisms for doping using both N-DMBI-H and BCF. In this paper we show for the first time the direct detection of molecular hydrogen in the uncatalysed doping of a variety of polymeric and molecular semiconductors using these dopants. Our results provide insight into the doping mechanism, providing information complementary to that obtained from more commonly applied methods such as optical, electron spin resonance, and electrical measurements. 
    more » « less