skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Symmetric and Antisymmetric Components of Polar-Amplified Warming
Abstract CO 2 -forced surface warming in general circulation models (GCMs) is initially polar amplified in the Arctic but not in the Antarctic—a largely hemispherically antisymmetric signal. Nevertheless, we show in CESM1 and 11 LongRunMIP GCMs that the hemispherically symmetric component of global-mean-normalized, zonal-mean warming ( ) under 4 × CO 2 changes weakly or becomes modestly more polar amplified from the first decade to near-equilibrium. Conversely, the antisymmetric warming component ( ) weakens with time in all models, modestly in some including FAMOUS, but effectively vanishing in others including CESM1. We explore mechanisms underlying the robust behavior with a diffusive moist energy balance model (MEBM), which given radiative feedback parameter ( λ ) and ocean heat uptake ( ) fields diagnosed from CESM1 adequately reproduces the CESM1 and fields. In further MEBM simulations perturbing λ and , is sensitive to their symmetric components only, and more to that of λ . A three-box, two-time-scale model fitted to FAMOUS and CESM1 reveals a curiously short Antarctic fast-response time scale in FAMOUS. In additional CESM1 simulations spanning a broader range of forcings, changes modestly across 2–16 × CO 2 , and in a Pliocene-like simulation is more polar amplified but likewise approximately time invariant. Determining the real-world relevance of these behaviors—which imply that a surprising amount of information about near-equilibrium polar amplification emerges within decades—merits further study.  more » « less
Award ID(s):
1844380
PAR ID:
10417112
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Climate
Volume:
35
Issue:
20
ISSN:
0894-8755
Page Range / eLocation ID:
3157 to 3172
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This study presents near future (2020–2044) temperature and precipitation changes over the Antarctic Peninsula under the high-emission scenario (RCP8.5). We make use of historical and projected simulations from 19 global climate models (GCMs) participating in Coupled Model Intercomparison Project phase 5 (CMIP5). We compare and contrast GCMs projections with two groups of regional climate model simulations (RCMs): (1) high resolution (15-km) simulations performed with Polar-WRF model forced with bias-corrected NCAR-CESM1 (NC-CORR) over the Antarctic Peninsula, (2) medium resolution (50-km) simulations of KNMI-RACMO21P forced with EC-EARTH (EC) obtained from the CORDEX-Antarctica. A further comparison of historical simulations (1981–2005) with respect to ERA5 reanalysis is also included for circulation patterns and near-surface temperature climatology. In general, both RCM boundary conditions represent well the main circulation patterns of the historical period. Nonetheless, there are important differences in projections such as a notable deepening and weakening of the Amundsen Sea Low in EC and NC-CORR, respectively. Mean annual near-surface temperatures are projected to increase by about 0.5–1.5 ◦ C across the entire peninsula. Temperature increase is more substantial in autumn and winter ( ∼ 2 ◦C). Following opposite circulation pattern changes, both EC and NC-CORR exhibit different warming rates, indicating a possible continuation of natural decadal variability. Although generally showing similar temperature changes, RCM projections show less warming and a smaller increase in melt days in the Larsen Ice Shelf compared to their respective driving fields. Regarding precipitation, there is a broad agreement among the simulations, indicating an increase in mean annual precipitation ( ∼ 5 to 10%). However, RCMs show some notable differences over the Larsen Ice Shelf where total precipitation decreases (for RACMO) and shows a small increase in rain frequency. We conclude that it seems still difficult to get consistent projections from GCMs for the Antarctic Peninsula as depicted in both RCM boundary conditions. In addition, dominant and common changes from the boundary conditions are largely evident in the RCM simulations. We argue that added value of RCM projections is driven by processes shaped by finer local details and different physics schemes that are introduced by RCMs, particularly over the Larsen Ice Shelf. 
    more » « less
  2. Meridional atmospheric heat transport (AHT) has been investigated through three broad perspectives: a dynamic perspective, linking AHT to the poleward flux of moist static energy (MSE) by atmospheric motions; an energetic perspective, linking AHT to energy input to the atmosphere by top-of-atmosphere radiation and surface heat fluxes; and a diffusive perspective, representing AHT in terms downgradient energy transport. It is shown here that the three perspectives provide complementary diagnostics of meridional AHT and its changes under greenhouse gas forcing. When combined, the energetic and diffusive perspectives offer prognostic insights: anomalous AHT is constrained to satisfy the net energetic demands of radiative forcing, radiative feedbacks, and ocean heat uptake; in turn, the meridional pattern of warming must adjust to produce those AHT changes, and does so approximately according to diffusion of anomalous MSE. The relationship between temperature and MSE exerts strong constraints on the warming pattern, favoring polar amplification. These conclusions are supported by use of a diffusive moist energy balance model (EBM) that accurately predicts zonal-mean warming and AHT changes within comprehensive general circulation models (GCMs). A dry diffusive EBM predicts similar AHT changes in order to satisfy the same energetic constraints, but does so through tropically amplified warming—at odds with the GCMs’ polar-amplified warming pattern. The results suggest that polar-amplified warming is a near-inevitable consequence of a moist, diffusive atmosphere’s response to greenhouse gas forcing. In this view, atmospheric circulations must act to satisfy net AHT as constrained by energetics. 
    more » « less
  3. Abstract The relative importance of radiative feedbacks and emissions scenarios in controlling surface warming patterns is challenging to quantify across model generations. We analyze three variants of the Community Earth System Model (CESM) with differing equilibrium climate sensitivities under identical CMIP5 historical and high‐emissions scenarios. CESM1, our base model, exhibits Arctic‐amplified warming with the least warming in the Southern Hemisphere middle latitudes. A variant of CESM1 with enhanced extratropical shortwave cloud feedbacks shows slightly increased late‐21st century warming at all latitudes. In the next‐generation model, CESM2, global‐mean warming is also slightly greater, but the warming is zonally redistributed in a pattern mirroring cloud and surface albedo feedbacks. However, if the nominally equivalent CMIP6 scenario is applied to CESM2, the redistributed warming pattern is preserved, but global‐mean warming is significantly greater. These results demonstrate how model structural differences and scenario differences combine to produce differences in climate projections across model generations. 
    more » « less
  4. As a step towards understanding the fundamental drivers of polar climate change, we evaluate contributions to polar warming and its seasonal and hemispheric asymmetries in Coupled Model Intercomparison Project phase 6 (CMIP6) as compared with CMIP5. CMIP6 models broadly capture the observed pattern of surface- and winter-dominated Arctic warming that has outpaced both tropical and Antarctic warming in recent decades. For both CMIP5 and CMIP6, CO 2 quadrupling experiments reveal that the lapse-rate and surface albedo feedbacks contribute most to stronger warming in the Arctic than the tropics or Antarctic. The relative strength of the polar surface albedo feedback in comparison to the lapse-rate feedback is sensitive to the choice of radiative kernel, and the albedo feedback contributes most to intermodel spread in polar warming at both poles. By separately calculating moist and dry atmospheric heat transport, we show that increased poleward moisture transport is another important driver of Arctic amplification and the largest contributor to projected Antarctic warming. Seasonal ocean heat storage and winter-amplified temperature feedbacks contribute most to the winter peak in warming in the Arctic and a weaker winter peak in the Antarctic. In comparison with CMIP5, stronger polar warming in CMIP6 results from a larger surface albedo feedback at both poles, combined with less-negative cloud feedbacks in the Arctic and increased poleward moisture transport in the Antarctic. However, normalizing by the global-mean surface warming yields a similar degree of Arctic amplification and only slightly increased Antarctic amplification in CMIP6 compared to CMIP5. 
    more » « less
  5. Abstract Slab-ocean aquaplanet simulations with thermodynamic sea ice are used to study the zonally symmetric mechanisms whereby polar sea ice loss impacts the midlatitude atmosphere. Imposed sea ice loss (difference without and with sea ice with historical CO2concentration) leads to global warming, polar amplified warming, and a weakening of poleward atmospheric energy transport and the midlatitude storm-track intensity. The simulations confirm an energetic mechanism that predicts a weakening of storm-track intensity in response to sea ice loss, given the change of surface albedo and assuming a passive ocean. Namely, sea ice loss increases the absorption of shortwave radiation by the surface (following the decrease of surface albedo), which increases surface turbulent fluxes into the atmosphere thereby weakening poleward atmospheric energy transport. The storm-track intensity weakens because it dominates poleward energy transport. The quantitative prediction underlying the mechanism captures the weakening but underestimates its amplitude. The weakening is also consistent with weaker mean available potential energy (polar amplified warming) and scales with sea ice extent, which is controlled by the slab-ocean depth. The energetic mechanism also operates in response to sea ice loss due to melting (difference of the response to quadrupled CO2with and without sea ice). Finally, the midlatitude response to sea ice loss in the aquaplanet agrees qualitatively with the response in more complex climate models. Namely, the storm-track intensity weakens and the energetic mechanism operates, but the method used to impose sea ice loss in coupled models impacts the surface response. 
    more » « less