skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fei, Muchun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A practical method is introduced for the catalytic conversion of terminal alkynes into α-substituted vinyl boronic esters. The process employs catalytic amounts of nanoparticle-supported gold catalysts and catalytic amounts of copper to effect the overall transformation. 
    more » « less
    Free, publicly-accessible full text available June 5, 2025
  2. Free, publicly-accessible full text available April 30, 2025
  3. Abstract Direct synthesis of CH3COOH from CH4and CO2is an appealing approach for the utilization of two potent greenhouse gases that are notoriously difficult to activate. In thisCommunication, we report an integrated route to enable this reaction. Recognizing the thermodynamic stability of CO2, our strategy sought to first activate CO2to produce CO (through electrochemical CO2reduction) and O2(through water oxidation), followed by oxidative CH4carbonylation catalyzed by Rh single atom catalysts supported on zeolite. The net result was CH4carboxylation with 100 % atom economy. CH3COOH was obtained at a high selectivity (>80 %) and good yield (ca. 3.2 mmol g−1catin 3 h). Isotope labelling experiments confirmed that CH3COOH is produced through the coupling of CH4and CO2. This work represents the first successful integration of CO/O2production with oxidative carbonylation reaction. The result is expected to inspire more carboxylation reactions utilizing preactivated CO2that take advantage of both products from the reduction and oxidation processes, thus achieving high atom efficiency in the synthesis. 
    more » « less
  4. Abstract Motivated by in silico predictions that Co, Rh, and Ir dopants would lead to low overpotentials to improve OER activity of Ni‐based hydroxides, we report here an experimental confirmation on the altered OER activities for a series of metals (Mo, W, Fe, Ru, Co, Rh, Ir) doped into γ‐NiOOH. The in situ electrical conductivity for metal doped γ‐NiOOH correlates well with the trend in enhanced OER activities. Density functional theory (DFT) calculations were used to rationalize the in situ conductivity of the key intermediate states of metal doped γ‐NiOOH during OER. The simultaneous increase of OER activity with intermediate conductivity was later rationalized by their intrinsic connections to the double exchange (DE) interaction between adjacent metal ions with variousdorbital occupancies, serving as an indicator for the key metal‐oxo radical character, and an effective descriptor for the mechanistic evaluation and theoretical guidance in design and screening of efficient OER catalysts. 
    more » « less