skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Feng, B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. Abstract Irritable bowel syndrome afflicts 10–20% of the global population, causing visceral pain with increased sensitivity to colorectal distension and normal bowel movements. Understanding and predicting these biomechanics will further advance our understanding of visceral pain and complement the existing literature on visceral neurophysiology. We recently performed a series of experiments at three longitudinal segments (colonic, intermediate, and rectal) of the distal 30 mm of colorectums of mice. We also established and fitted constitutive models addressing mechanical heterogeneity in both the through-thickness and longitudinal directions of the colorectum. Afferent nerve endings, strategically located within the submucosa, are likely nociceptors that detect concentrations of mechanical stresses to evoke the perception of pain from the viscera. In this study, we aim to: (1) establish and validate a method for incorporating residual stresses into models of colorectums, (2) predict the effects of residual stresses on the intratissue mechanics within the colorectum, and (3) establish intratissue distributions of stretches and stresses within the colorectum in vivo. To these ends we developed two-layered, composite finite element models of the colorectum based on our experimental evidence and validated our approaches against independent experimental data. We included layer- and segment-specific residual stretches/stresses in our simulations via the prestrain algorithm built into the finite element software febio. Our models and modeling approaches allow researchers to predict both organ and intratissue biomechanics of the colorectum and may facilitate better understanding of the underlying mechanical mechanisms of visceral pain. 
    more » « less