Trigonal planar M3(O/OH) trimers are among the most important clusters in inorganic chemistry and are the foundational features of multiple high‐impact MOF platforms. Here we introduce a concept called isoreticular cluster series and demonstrate that M3(O/OH), as the first member of a supertrimer series, can be combined with a higher hierarchical member (double‐deck trimer here) to advance isoreticular chemistry. We report here an isoreticular series of pore‐space‐partitioned MOFs called M3M6
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract pacs made from co‐assembly between M3single‐deck trimer and M3x2double‐deck trimer. Important factors were identified on this multi‐modular MOF platform to guide optimization of each module, which enables the phase selection of M3M6pacs by overcoming the formation of previously‐always‐observed same‐cluster phases. The newpacs materials exhibit high surface area and high uptake capacity for CO2and small hydrocarbons, as well as selective adsorption properties relevant to separation of industrially important mixtures such as C2H2/CO2and C2H2/C2H4. Furthermore, new M3M6pacs materials show electrocatalytic properties with high activity.Free, publicly-accessible full text available May 8, 2025 -
Abstract Isoreticular chemistry, which enables property optimization by changing compositions without changing topology, is a powerful synthetic strategy. One of the biggest challenges facing isoreticular chemistry is to extend it to ligands with strongly coordinating substituent groups such as unbound −COOH, because competitive interactions between such groups and metal ions can derail isoreticular chemistry. It is even more challenging to have an isoreticular series of carboxyl‐functionalized MOFs capable of encompassing chemically disparate metal ions. Here, with the simultaneous introduction of carboxyl functionalization and pore space partition, a family of carboxyl‐functionalized materials is developed in diverse compositions from homometallic Cr3+and Ni2+to heterometallic Co2+/V3+, Ni2+/V3+, Co2+/In3+, Co2+/Ni2+. Cr‐MOFs remain highly crystalline in boiling water. Unprecedentedly, one Cr‐MOF can withstand the treatment cycle with 10
m NaOH and 12m HCl, allowing reversible inter‐conversion between unbound −COOH acid form and −COO−base form. These materials exhibit excellent sorption properties such as high uptake capacity for CO2(100.2 cm3 g−1) and hydrocarbon gases (e.g., 142.1 cm3 g−1for C2H2, 110.5 cm3 g−1for C2H4) at 1 bar and 298K, high benzene/cyclohexane selectivity (up to ≈40), and promising separation performance for gas mixtures such as C2H2/CO2and C2H2/C2H4. -
Tailorable Multi‐Modular Pore‐Space‐Partitioned Vanadium Metal‐Organic Frameworks for Gas Separation
Abstract Currently, few porous vanadium metal‐organic frameworks (V‐MOFs) are known and even fewer are obtainable as single crystals, resulting in limited information on their structures and properties. Here this work demonstrates remarkable promise of V‐MOFs by presenting an extensible family of V‐MOFs with tailorable pore geometry and properties. The synthesis leverages inter‐modular synergy on a tri‐modular pore‐partitioned platform. New V‐MOFs show a broad range of structural features and sorption properties suitable for gas storage and separation applications for C2H2/CO2, C2H6/C2H4, and C3H8/C3H6. The
c /a ratio of the hexagonal cell, a measure of pore shape, is tunable from 0.612 to 1.258. Other tunable properties include pore size from 5.0 to 10.9 Å and surface area from 820 to 2964 m2g−1. With C2H2/CO2selectivity from 3.3 to 11 and high uptake capacity for C2H2from 65.2 to 182 cm3g−1(298K, 1 bar), an efficient separation is confirmed by breakthrough experiments. The near‐record high uptake for C2H6(166.8 cm3g−1) contributes to the promise for C2H6‐selective separation of C2H6/C2H4. The multi‐module pore expansion enables transition from C3H6‐selective to more desirable C3H8‐selective separation with extraordinarily high C3H8uptake (254.9 cm3g−1) and high separation potential (1.25 mmol g−1) for C3H8/C3H6(50:50 v/v) mixture.