We construct special cycles on the moduli stack of hermitian shtukas. We prove an identity between (1) the
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
00000030000
- More
- Availability
-
12
- Author / Contributor
- Filter by Author / Creator
-
-
Feng, Tony (3)
-
Harris, Michael (1)
-
Landesman, Aaron (1)
-
Mazur, Barry (1)
-
Rains, Eric M. (1)
-
Yun, Zhiwei (1)
-
Zhang, Wei (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract central derivative of non-singular Fourier coefficients of a normalized Siegel–Eisenstein series, and (2) the degree of special cycles of “virtual dimension 0” on the moduli stack of hermitian shtukas with$r^{\mathrm{th}}$ legs. This may be viewed as a function-field analogue of the Kudla-Rapoport Conjecture, that has the additional feature of encompassing all higher derivatives of the Eisenstein series.$r$ Free, publicly-accessible full text available February 1, 2025 -
Feng, Tony ; Harris, Michael ; Mazur, Barry ( , Notices of the International Consortium of Chinese Mathematicians)Free, publicly-accessible full text available December 1, 2024
-
Feng, Tony ; Landesman, Aaron ; Rains, Eric M. ( , Mathematische Annalen)
Abstract Fix a positive integer
n and a finite field . We study the joint distribution of the rank$${\mathbb {F}}_q$$ , the$${{\,\mathrm{rk}\,}}(E)$$ n -Selmer group , and the$$\text {Sel}_n(E)$$ n -torsion in the Tate–Shafarevich group Equation missing<#comment/>asE varies over elliptic curves of fixed height over$$d \ge 2$$ . We compute this joint distribution in the large$${\mathbb {F}}_q(t)$$ q limit. We also show that the “largeq , then large height” limit of this distribution agrees with the one predicted by Bhargava–Kane–Lenstra–Poonen–Rains.