skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Higher Siegel–Weil formula for unitary groups: the non-singular terms
Abstract We construct special cycles on the moduli stack of hermitian shtukas. We prove an identity between (1) the$$r^{\mathrm{th}}$$ r th central derivative of non-singular Fourier coefficients of a normalized Siegel–Eisenstein series, and (2) the degree of special cycles of “virtual dimension 0” on the moduli stack of hermitian shtukas with$$r$$ r legs. This may be viewed as a function-field analogue of the Kudla-Rapoport Conjecture, that has the additional feature of encompassing all higher derivatives of the Eisenstein series.  more » « less
Award ID(s):
1901642
PAR ID:
10514759
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Inventiones mathematicae
Volume:
235
Issue:
2
ISSN:
0020-9910
Page Range / eLocation ID:
569 to 668
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this paper, we present counterexamples to maximal$$L^p$$ L p -regularity for a parabolic PDE. The example is a second-order operator in divergence form with space and time-dependent coefficients. It is well-known from Lions’ theory that such operators admit maximal$$L^2$$ L 2 -regularity on$$H^{-1}$$ H - 1 under a coercivity condition on the coefficients, and without any regularity conditions in time and space. We show that in general one cannot expect maximal$$L^p$$ L p -regularity on$$H^{-1}(\mathbb {R}^d)$$ H - 1 ( R d ) or$$L^2$$ L 2 -regularity on$$L^2(\mathbb {R}^d)$$ L 2 ( R d )
    more » « less
  2. Abstract We report the identification of metastable isomeric states of$$^{228}$$ 228 Ac at 6.28 keV, 6.67 keV and 20.19 keV, with lifetimes of an order of 100 ns. These states are produced by the$$\beta $$ β -decay of$$^{228}$$ 228 Ra, a component of the$$^{232}$$ 232 Th decay chain, with$$\beta $$ β Q-values of 39.52 keV, 39.13 keV and 25.61 keV, respectively. Due to the low Q-value of$$^{228}$$ 228 Ra as well as the relative abundance of$$^{232}$$ 232 Th and their progeny in low background experiments, these observations potentially impact the low-energy background modeling of dark matter search experiments. 
    more » « less
  3. Abstract In this paper we prove a higher dimensional analogue of Carleson’s$$\varepsilon ^{2}$$ ε 2 conjecture. Given two arbitrary disjoint Borel sets$$\Omega ^{+},\Omega ^{-}\subset \mathbb{R}^{n+1}$$ Ω + , Ω R n + 1 , and$$x\in \mathbb{R}^{n+1}$$ x R n + 1 ,$$r>0$$ r > 0 , we denote$$ \varepsilon _{n}(x,r) := \frac{1}{r^{n}}\, \inf _{H^{+}} \mathcal{H}^{n} \left ( ((\partial B(x,r)\cap H^{+}) \setminus \Omega ^{+}) \cup (( \partial B(x,r)\cap H^{-}) \setminus \Omega ^{-})\right ), $$ ε n ( x , r ) : = 1 r n inf H + H n ( ( ( B ( x , r ) H + ) Ω + ) ( ( B ( x , r ) H ) Ω ) ) , where the infimum is taken over all open affine half-spaces$$H^{+}$$ H + such that$$x \in \partial H^{+}$$ x H + and we define$$H^{-}= \mathbb{R}^{n+1} \setminus \overline{H^{+}}$$ H = R n + 1 H + . Our first main result asserts that the set of points$$x\in \mathbb{R}^{n+1}$$ x R n + 1 where$$ \int _{0}^{1} \varepsilon _{n}(x,r)^{2} \, \frac{dr}{r}< \infty $$ 0 1 ε n ( x , r ) 2 d r r < is$$n$$ n -rectifiable. For our second main result we assume that$$\Omega ^{+}$$ Ω + ,$$\Omega ^{-}$$ Ω are open and that$$\Omega ^{+}\cup \Omega ^{-}$$ Ω + Ω satisfies the capacity density condition. For each$$x \in \partial \Omega ^{+} \cup \partial \Omega ^{-}$$ x Ω + Ω and$$r>0$$ r > 0 , we denote by$$\alpha ^{\pm }(x,r)$$ α ± ( x , r ) the characteristic constant of the (spherical) open sets$$\Omega ^{\pm }\cap \partial B(x,r)$$ Ω ± B ( x , r ) . We show that, up to a set of$$\mathcal{H}^{n}$$ H n measure zero,$$x$$ x is a tangent point for both$$\partial \Omega ^{+}$$ Ω + and$$\partial \Omega ^{-}$$ Ω if and only if$$ \int _{0}^{1} \min (1,\alpha ^{+}(x,r) + \alpha ^{-}(x,r) -2) \frac{dr}{r} < \infty . $$ 0 1 min ( 1 , α + ( x , r ) + α ( x , r ) 2 ) d r r < . The first result is new even in the plane and the second one improves and extends to higher dimensions the$$\varepsilon ^{2}$$ ε 2 conjecture of Carleson. 
    more » « less
  4. Abstract Geometric Langlands predicts an isomorphism between Whittaker coefficients of Eisenstein series and functions on the moduli space of$$\check {N}$$-local systems. We prove this formula by interpreting Whittaker coefficients of Eisenstein series as factorization homology and then invoking Beilinson and Drinfeld’s formula for chiral homology of a chiral enveloping algebra. 
    more » « less
  5. Abstract We study the production of$$D^0$$ D 0 meson inp+pandp-Pb collisions using the improved AMPT model considering both coalescence and independent fragmentation of charm quarks after the Cronin broadening is included. After a detailed discussion of the improvements implemented in the AMPT model for heavy quark production, we show that the modified AMPT model can provide a good description of$$D^0$$ D 0 meson spectra inp-Pb collisions, the$$Q_{\textrm{pPb}}$$ Q pPb data at different centralities and$$R_{\textrm{pPb}}$$ R pPb data in both mid- and forward (backward) rapidities. We also studied the effects of nuclear shadowing and parton cascade on the rapidity dependence of$$D^{0}$$ D 0 meson production and$$R_{\textrm{pPb}}$$ R pPb . Our results indicate that using the same strength of the Cronin effect (i.e$$\delta $$ δ value) as that obtained from the mid-rapidity data leads to a considerable overestimation of the$$D^0$$ D 0 meson spectra and$$R_{\textrm{pPb}}$$ R pPb data at high$$p_{\textrm{T}}$$ p T in the backward rapidity. As a result, the$$\delta $$ δ is determined via a$$\chi ^2$$ χ 2 fitting of the$$R_{\textrm{pPb}}$$ R pPb data across various rapidities. This work lays the foundation for a better understanding of cold-nuclear-matter (CNM) effects in relativistic heavy-ion collisions. 
    more » « less