skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, April 12 until 2:00 AM ET on Saturday, April 13 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Fer, Ilker"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The rapid melt of snow and sea ice during the Arctic summer provides a significant source of low-salinity meltwater to the surface ocean on the local scale. The accumulation of this meltwater on, under, and around sea ice floes can result in relatively thin meltwater layers in the upper ocean. Due to the small-scale nature of these upper-ocean features, typically on the order of 1 m thick or less, they are rarely detected by standard methods, but are nevertheless pervasive and critically important in Arctic summer. Observations during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition in summer 2020 focused on the evolution of such layers and made significant advancements in understanding their role in the coupled Arctic system. Here we provide a review of thin meltwater layers in the Arctic, with emphasis on the new findings from MOSAiC. Both prior and recent observational datasets indicate an intermittent yet long-lasting (weeks to months) meltwater layer in the upper ocean on the order of 0.1 m to 1.0 m in thickness, with a large spatial range. The presence of meltwater layers impacts the physical system by reducing bottom ice melt and allowing new ice formation via false bottom growth. Collectively, the meltwater layer and false bottoms reduce atmosphere-ocean exchanges of momentum, energy, and material. The impacts on the coupled Arctic system are far-reaching, including acting as a barrier for nutrient and gas exchange and impacting ecosystem diversity and productivity. 
    more » « less
  2. Abstract The Lofoten Basin is the largest oceanic reservoir of heat in the Nordic Seas, and the site of important heat fluxes to the atmosphere. An intense permanent anticyclone in the basin impacts the regional hydrography, energetics, and ecosystem. Repeated sampling of this Lofoten Basin Eddy from dedicated cruises, autonomous profiling gliders, and acoustically-tracked subsurface floats enables the documentation of its dynamics and energetics over the course of 15 months. The eddy core, in nearly solid-body rotation, exhibits an unusually low vertical vorticity close to the local inertial frequency and important strain rates at the periphery. Subsurface floats as deep as 800 m are trapped within the core for their entire deployment duration (up to 15 months). The potential vorticity is reduced in the core by two orders of magnitude relative to the surroundings, creating a barrier. In the winter, this barrier weakens and lateral exchanges and heat flux between the eddy and the surroundings increase, apparently the result of dynamical instabilities and a possible eddy merger. Based on a simple energy budget, the dissipation timescale for the eddy energy is three years, during which wintertime convection seasonally modulates potential and kinetic energy. 
    more » « less
  3. Abstract

    Tidal and wind-driven near-inertial currents play a vital role in the changing Arctic climate and the marine ecosystems. We compiled 429 available moored current observations taken over the last two decades throughout the Arctic to assemble a pan-Arctic atlas of tidal band currents. The atlas contains different tidal current products designed for the analysis of tidal parameters from monthly to inter-annual time scales. On shorter time scales, wind-driven inertial currents cannot be analytically separated from semidiurnal tidal constituents. Thus, we include 10–30 h band-pass filtered currents, which include all semidiurnal and diurnal tidal constituents as well as wind-driven inertial currents for the analysis of high-frequency variability of ocean dynamics. This allows for a wide range of possible uses, including local case studies of baroclinic tidal currents, assessment of long-term trends in tidal band kinetic energy and Arctic-wide validation of ocean circulation models. This atlas may also be a valuable tool for resource management and industrial applications such as fisheries, navigation and offshore construction.

     
    more » « less
  4. Abstract A 15-yr duration record of mooring observations from the eastern (>70°E) Eurasian Basin (EB) of the Arctic Ocean is used to show and quantify the recently increased oceanic heat flux from intermediate-depth (~150–900 m) warm Atlantic Water (AW) to the surface mixed layer and sea ice. The upward release of AW heat is regulated by the stability of the overlying halocline, which we show has weakened substantially in recent years. Shoaling of the AW has also contributed, with observations in winter 2017–18 showing AW at only 80 m depth, just below the wintertime surface mixed layer, the shallowest in our mooring records. The weakening of the halocline for several months at this time implies that AW heat was linked to winter convection associated with brine rejection during sea ice formation. This resulted in a substantial increase of upward oceanic heat flux during the winter season, from an average of 3–4 W m −2 in 2007–08 to >10 W m −2 in 2016–18. This seasonal AW heat loss in the eastern EB is equivalent to a more than a twofold reduction of winter ice growth. These changes imply a positive feedback as reduced sea ice cover permits increased mixing, augmenting the summer-dominated ice-albedo feedback. 
    more » « less
  5. Arctic Ocean properties and processes are highly relevant to the regional and global coupled climate system, yet still scarcely observed, especially in winter. Team OCEAN conducted a full year of physical oceanography observations as part of the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC), a drift with the Arctic sea ice from October 2019 to September 2020. An international team designed and implemented the program to characterize the Arctic Ocean system in unprecedented detail, from the seafloor to the air-sea ice-ocean interface, from sub-mesoscales to pan-Arctic. The oceanographic measurements were coordinated with the other teams to explore the ocean physics and linkages to the climate and ecosystem. This paper introduces the major components of the physical oceanography program and complements the other team overviews of the MOSAiC observational program. Team OCEAN’s sampling strategy was designed around hydrographic ship-, ice- and autonomous platform-based measurements to improve the understanding of regional circulation and mixing processes. Measurements were carried out both routinely, with a regular schedule, and in response to storms or opening leads. Here we present along-drift time series of hydrographic properties, allowing insights into the seasonal and regional evolution of the water column from winter in the Laptev Sea to early summer in Fram Strait: freshening of the surface, deepening of the mixed layer, increase in temperature and salinity of the Atlantic Water. We also highlight the presence of Canada Basin deep water intrusions and a surface meltwater layer in leads. MOSAiC most likely was the most comprehensive program ever conducted over the ice-covered Arctic Ocean. While data analysis and interpretation are ongoing, the acquired datasets will support a wide range of physical oceanography and multi-disciplinary research. They will provide a significant foundation for assessing and advancing modeling capabilities in the Arctic Ocean. 
    more » « less
  6. Abstract

    In the Arctic Ocean, limited measurements indicate that the strongest mixing below the atmospherically forced surface mixed layer occurs where tidal currents are strong. However, mechanisms of energy conversion from tides to turbulence and the overall contribution of tidally driven mixing to Arctic Ocean state are poorly understood. We present measurements from the shelf north of Svalbard that show abrupt isopycnal vertical displacements of 10–50 m and intense dissipation associated with cross‐isobath diurnal tidal currents of0.15 m s−1. Energy from the barotropic tide accumulated in a trapped baroclinic lee wave during maximum downslope flow and was released around slack water. During a 6‐hr turbulent event, high‐frequency internal waves were present, the full 300‐m depth water column became turbulent, dissipation rates increased by a factor of 100, and turbulent heat flux averaged 15 W m−2compared with the background rate of 1 W m−2.

     
    more » « less
  7. Abstract

    A 15‐year (2004–2018) record of mooring observations from the upper 50 m of the ocean in the eastern Eurasian Basin reveals increased current speeds and vertical shear, associated with an increasing coupling between wind, ice, and the upper ocean over 2004–2018, particularly in summer. Substantial increases in current speeds and shears in the upper 50 m are dominated by a two times amplification of currents in the semidiurnal band, which includes tides and wind‐forced near‐inertial oscillations. For the first time the strengthened upper ocean currents and shear are observed to coincide with weakening stratification. This coupling links the Atlantic Water heat to the sea ice, a consequence of which would be reducing regional sea ice volume. These results point to a new positive feedback mechanism in which reduced sea ice extent facilitates more energetic inertial oscillations and associated upper‐ocean shear, thus leading to enhanced ventilation of the Atlantic Water.

     
    more » « less
  8. null (Ed.)