Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Materials functionalities may be associated with atomic-level structural dynamics occurring on the millisecond timescale. However, the capability of electron microscopy to image structures with high spatial resolution and millisecond temporal resolution is often limited by poor signal-to-noise ratios. With an unsupervised deep denoising framework, we observed metal nanoparticle surfaces (platinum nanoparticles on cerium oxide) in a gas environment with time resolutions down to 10 milliseconds at a moderate electron dose. On this timescale, many nanoparticle surfaces continuously transition between ordered and disordered configurations. Stress fields can penetrate below the surface, leading to defect formation and destabilization, thus making the nanoparticle fluxional. Combining this unsupervised denoiser with in situ electron microscopy greatly improves spatiotemporal characterization, opening a new window for the exploration of atomic-level structural dynamics in materials.more » « lessFree, publicly-accessible full text available February 28, 2026
-
Ocean mesoscale eddies are often poorly represented in climate models, and therefore, their effects on the large scale circulation must be parameterized. Traditional parameterizations, which represent the bulk effect of the unresolved eddies, can be improved with new subgrid models learned directly from data. Zanna and Bolton (ZB20) applied an equation‐discovery algorithm to reveal an interpretable expression parameterizing the subgrid momentum fluxes by mesoscale eddies through the components of the velocity‐gradient tensor. In this work, we implement the ZB20 parameterization into the primitive‐equation GFDL MOM6 ocean model and test it in two idealized configurations with significantly different dynamical regimes and topography. The original parameterization was found to generate excessive numerical noise near the grid scale. We propose two filtering approaches to avoid the numerical issues and additionally enhance the strength of large‐scale energy backscatter. The filtered ZB20 parameterizations led to improved climatological mean state and energy distributions, compared to the current state‐of‐the‐art energy backscatter parameterizations. The filtered ZB20 parameterizations are scale‐aware and, consequently, can be used with a single value of the non‐dimensional scaling coefficient for a range of resolutions. The successful application of the filtered ZB20 parameterizations to parameterize mesoscale eddies in two idealized configurations offers a promising opportunity to reduce long‐standing biases in global ocean simulations in future studies.more » « lessFree, publicly-accessible full text available October 1, 2025
-
Subgrid parameterizations of mesoscale eddies continue to be in demand for climate simulations. These subgrid parameterizations can be powerfully designed using physics and/or data‐driven methods, with uncertainty quantification. For example, Guillaumin and Zanna (2021) proposed a Machine Learning (ML) model that predicts subgrid forcing and its local uncertainty. The major assumption and potential drawback of this model is the statistical independence of stochastic residuals between grid points. Here, we aim to improve the simulation of stochastic forcing with generative models of ML, such as Generative adversarial network (GAN) and Variational autoencoder (VAE). Generative models learn the distribution of subgrid forcing conditioned on the resolved flow directly from data and they can produce new samples from this distribution. Generative models can potentially capture not only the spatial correlation but any statistically significant property of subgrid forcing. We test the proposed stochastic parameterizations offline and online in an idealized ocean model. We show that generative models are able to predict subgrid forcing and its uncertainty with spatially correlated stochastic forcing. Online simulations for a range of resolutions demonstrated that generative models are superior to the baseline ML model at the coarsest resolution.more » « less
-
Unsupervised denoising is a crucial challenge in real-world imaging applications. Unsupervised deep-learning methods have demonstrated impressive performance on benchmarks based on synthetic noise. However, no metrics exist to evaluate these methods in an unsupervised fashion. This is highly problematic for the many practical applications where ground-truth clean images are not available. In this work, we propose two novel metrics: the unsupervised mean squared error (MSE) and the unsupervised peak signalto-noise ratio (PSNR), which are computed using only noisy data. We provide a theoretical analysis of these metrics, showing that they are asymptotically consistent estimators of the supervised MSE and PSNR. Controlled numerical experiments with synthetic noise confirm that they provide accurate approximations in practice. We validate our approach on real-world data from two imaging modalities: videos in raw format and transmission electron microscopy. Our results demonstrate that the proposed metrics enable unsupervised evaluation of denoising methods based exclusively on noisy data.more » « less
-
Unsupervised denoising is a crucial challenge in real-world imaging applications. Unsupervised deep-learning methods have demonstrated impressive performance on benchmarks based on synthetic noise. However, no metrics are available to evaluate these methods in an unsupervised fashion. This is highly problematic for the many practical applications where ground-truth clean images are not available. In this work, we propose two novel metrics: the unsupervised mean squared error (MSE) and the unsupervised peak signal-to-noise ratio (PSNR), which are computed using only noisy data. We provide a theoretical analysis of these metrics, showing that they are asymptotically consistent estimators of the supervised MSE and PSNR. Controlled numerical experiments with synthetic noise confirm that they provide accurate approximations in practice. We validate our approach on real-world data from two imaging modalities: videos in raw format and transmission electron microscopy. Our results demonstrate that the proposed metrics enable unsupervised evaluation of denoising methods based exclusively on noisy data.more » « less
-
Unsupervised denoising is a crucial challenge in real-world imaging applications. Unsupervised deep-learning methods have demonstrated impressive performance on benchmarks based on synthetic noise. However, no metrics are available to evaluate these methods in an unsupervised fashion. This is highly problematic for the many practical applications where ground-truth clean images are not available. In this work, we propose two novel metrics: the unsupervised mean squared error (MSE) and the unsupervised peak signal-to-noise ratio (PSNR), which are computed using only noisy data. We provide a theoretical analysis of these metrics, showing that they are asymptotically consistent estimators of the supervised MSE and PSNR. Controlled numerical experiments with synthetic noise confirm that they provide accurate approximations in practice. We validate our approach on real-world data from two imaging modalities: videos in raw format and transmission electron microscopy. Our results demonstrate that the proposed metrics enable unsupervised evaluation of denoising methods based exclusively on noisy data.more » « less