skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fieg, Max"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 24, 2026
  2. A<sc>bstract</sc> Proton-proton collisions at energy-frontier facilities produce an intense flux of high-energy light particles, including neutrinos, in the forward direction. At the LHC, these particles are currently being studied with the far-forward experiments FASER/FASERνand SND@LHC, while new dedicated experiments have been proposed in the context of a Forward Physics Facility (FPF) operating at the HL-LHC. Here we present a first quantitative exploration of the reach for neutrino, QCD, and BSM physics of far-forward experiments integrated within the proposed Future Circular Collider (FCC) project as part of its proton-proton collision program (FCC-hh) at$$ \sqrt{s} $$ s ≃ 100 TeV. We find that 109electron/muon neutrinos and 107tau neutrinos could be detected, an increase of several orders of magnitude compared to (HL-)LHC yields. We study the impact of neutrino DIS measurements at the FPF@FCC to constrain the unpolarised and spin partonic structure of the nucleon and assess their sensitivity to nuclear dynamics down tox∼ 10−9with neutrinos produced in proton-lead collisions. We demonstrate that the FPF@FCC could measure the neutrino charge radius forνeandνμand reach down to five times the SM value forντ. We fingerprint the BSM sensitivity of the FPF@FCC for a variety of models, including dark Higgs bosons, relaxion-type scenarios, quirks, and millicharged particles, finding that these experiments would be able to discover LLPs with masses as large as 50 GeV and couplings as small as 10−8, and quirks with masses up to 10 TeV. Our study highlights the remarkable opportunities made possible by integrating far-forward experiments into the FCC project, and it provides new motivation for the FPF at the HL-LHC as an essential precedent to optimize the forward physics experiments that will enable the FCC to achieve its full physics potential. 
    more » « less
  3. A<sc>bstract</sc> Searches for new physics in the top quark sector are of great theoretical interest, yet some powerful avenues for discovery remain unexplored. We characterize the expected statistical power of the LHC dataset to constrain the single production of heavy top partnersTdecaying to a top quark and a photon or a top quark and a gluon. We describe an effective interaction which could generate such production, though the limits apply to a range of theoretical models. We find sensitivity to cross sections in the 102− 105fb range, forTmasses between 300 and 1000 GeV, depending on decay mode. 
    more » « less
  4. Abstract Proton-proton collisions at the LHC generate a high-intensity collimated beam of neutrinos in the forward (beam) direction, characterised by energies of up to several TeV. The recent observation of LHC neutrinos by FASER$$\nu $$ ν and SND@LHC signifies that this previously overlooked particle beam is now available for scientific investigation. Here we quantify the impact that neutrino deep-inelastic scattering (DIS) measurements at the LHC would have on the parton distributions (PDFs) of protons and heavy nuclei. We generate projections for DIS structure functions for FASER$$\nu $$ ν and SND@LHC at Run III, as well as for the FASER$$\nu $$ ν 2, AdvSND, and FLArE experiments to be hosted at the proposed Forward Physics Facility (FPF) operating concurrently with the High-Luminosity LHC (HL-LHC). We determine that up to one million electron-neutrino and muon-neutrino DIS interactions within detector acceptance can be expected by the end of the HL-LHC, covering a kinematic region inxand$$Q^2$$ Q 2 overlapping with that of the Electron-Ion Collider. Including these DIS projections in global (n)PDF analyses, specifically PDF4LHC21, NNPDF4.0, and EPPS21, reveals a significant reduction in PDF uncertainties, in particular for strangeness and the up and down valence PDFs. We show that LHC neutrino data enable improved theoretical predictions for core processes at the HL-LHC, such as Higgs and weak gauge boson production. Our analysis demonstrates that exploiting the LHC neutrino beam effectively provides CERN with a “Neutrino-Ion Collider” without requiring modifications in its accelerator infrastructure. 
    more » « less
  5. This Letter presents the measurement of the energy-dependent neutrino-nucleon cross section in tungsten and the differential flux of muon neutrinos and antineutrinos. The analysis is performed using proton-proton collision data at a center-of-mass energy of 13.6 TeV and corresponding to an integrated luminosity of ( 65.6 ± 1.4 ) fb 1 . Using the active electronic components of the FASER detector, 338.1 ± 21.0 charged current muon neutrino interaction events are identified, with backgrounds from other processes subtracted. We unfold the neutrino events into a fiducial volume corresponding to the sensitive regions of the FASER detector and interpret the results in two ways: (i) we use the expected neutrino flux to measure the cross section, and (ii) we use the predicted cross section to measure the neutrino flux. Both results are presented in six bins of neutrino energy, achieving the first differential measurement in the TeV range. The observed distributions align with standard model predictions. Using this differential data, we extract the contributions of neutrinos from pion and kaon decays. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  6. null (Ed.)
  7. A<sc>bstract</sc> The first FASER search for a light, long-lived particle decaying into a pair of photons is reported. The search uses LHC proton-proton collision data at$$ \sqrt{s} $$ s = 13.6 TeV collected in 2022 and 2023, corresponding to an integrated luminosity of 57.7 fb−1. A model with axion-like particles (ALPs) dominantly coupled to weak gauge bosons is the primary target. Signal events are characterised by high-energy deposits in the electromagnetic calorimeter and no signal in the veto scintillators. One event is observed, compared to a background expectation of 0.44 ± 0.39 events, which is entirely dominated by neutrino interactions. World-leading constraints on ALPs are obtained for masses up to 300 MeV and couplings to the Standard Model W gauge boson,gaWW, around 10−4GeV−1, testing a previously unexplored region of parameter space. Other new particle models that lead to the same experimental signature, including ALPs coupled to gluons or photons, U(1)Bgauge bosons, up-philic scalars, and a Type-I two-Higgs doublet model, are also considered for interpretation, and new constraints on previously viable parameter space are presented in this paper. 
    more » « less