Abstract Proton-proton collisions at the LHC generate a high-intensity collimated beam of neutrinos in the forward (beam) direction, characterised by energies of up to several TeV. The recent observation of LHC neutrinos by FASER$$\nu $$ and SND@LHC signifies that this previously overlooked particle beam is now available for scientific investigation. Here we quantify the impact that neutrino deep-inelastic scattering (DIS) measurements at the LHC would have on the parton distributions (PDFs) of protons and heavy nuclei. We generate projections for DIS structure functions for FASER$$\nu $$ and SND@LHC at Run III, as well as for the FASER$$\nu $$ 2, AdvSND, and FLArE experiments to be hosted at the proposed Forward Physics Facility (FPF) operating concurrently with the High-Luminosity LHC (HL-LHC). We determine that up to one million electron-neutrino and muon-neutrino DIS interactions within detector acceptance can be expected by the end of the HL-LHC, covering a kinematic region inxand$$Q^2$$ overlapping with that of the Electron-Ion Collider. Including these DIS projections in global (n)PDF analyses, specifically PDF4LHC21, NNPDF4.0, and EPPS21, reveals a significant reduction in PDF uncertainties, in particular for strangeness and the up and down valence PDFs. We show that LHC neutrino data enable improved theoretical predictions for core processes at the HL-LHC, such as Higgs and weak gauge boson production. Our analysis demonstrates that exploiting the LHC neutrino beam effectively provides CERN with a “Neutrino-Ion Collider” without requiring modifications in its accelerator infrastructure.
more »
« less
FPF@FCC: neutrino, QCD, and BSM physics opportunities with far-forward experiments at a 100 TeV Proton Collider
A<sc>bstract</sc> Proton-proton collisions at energy-frontier facilities produce an intense flux of high-energy light particles, including neutrinos, in the forward direction. At the LHC, these particles are currently being studied with the far-forward experiments FASER/FASERνand SND@LHC, while new dedicated experiments have been proposed in the context of a Forward Physics Facility (FPF) operating at the HL-LHC. Here we present a first quantitative exploration of the reach for neutrino, QCD, and BSM physics of far-forward experiments integrated within the proposed Future Circular Collider (FCC) project as part of its proton-proton collision program (FCC-hh) at$$ \sqrt{s} $$ ≃ 100 TeV. We find that 109electron/muon neutrinos and 107tau neutrinos could be detected, an increase of several orders of magnitude compared to (HL-)LHC yields. We study the impact of neutrino DIS measurements at the FPF@FCC to constrain the unpolarised and spin partonic structure of the nucleon and assess their sensitivity to nuclear dynamics down tox∼ 10−9with neutrinos produced in proton-lead collisions. We demonstrate that the FPF@FCC could measure the neutrino charge radius forνeandνμand reach down to five times the SM value forντ. We fingerprint the BSM sensitivity of the FPF@FCC for a variety of models, including dark Higgs bosons, relaxion-type scenarios, quirks, and millicharged particles, finding that these experiments would be able to discover LLPs with masses as large as 50 GeV and couplings as small as 10−8, and quirks with masses up to 10 TeV. Our study highlights the remarkable opportunities made possible by integrating far-forward experiments into the FCC project, and it provides new motivation for the FPF at the HL-LHC as an essential precedent to optimize the forward physics experiments that will enable the FCC to achieve its full physics potential.
more »
« less
- Award ID(s):
- 2210283
- PAR ID:
- 10612113
- Publisher / Repository:
- JHEP
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2025
- Issue:
- 1
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The recent direct detection of neutrinos at the LHC has opened a new window on high-energy particle physics and highlighted the potential of forward physics for groundbreaking discoveries. In the last year, the physics case for forward physics has continued to grow, and there has been extensive work on defining the Forward Physics Facility and its experiments to realize this physics potential in a timely and cost-effective manner. Following a 2-page Executive Summary, we first present the status of the FPF, beginning with the FPF’s unique potential to shed light on dark matter, new particles, neutrino physics, QCD, and astroparticle physics. We then summarize the current designs for the Facility and its experiments, FASER2, FASER$$\nu $$ 2, FORMOSA, and FLArE.more » « less
-
Abstract High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF’s physics potential.more » « less
-
A<sc>bstract</sc> The first FASER search for a light, long-lived particle decaying into a pair of photons is reported. The search uses LHC proton-proton collision data at$$ \sqrt{s} $$ = 13.6 TeV collected in 2022 and 2023, corresponding to an integrated luminosity of 57.7 fb−1. A model with axion-like particles (ALPs) dominantly coupled to weak gauge bosons is the primary target. Signal events are characterised by high-energy deposits in the electromagnetic calorimeter and no signal in the veto scintillators. One event is observed, compared to a background expectation of 0.44 ± 0.39 events, which is entirely dominated by neutrino interactions. World-leading constraints on ALPs are obtained for masses up to 300 MeV and couplings to the Standard Model W gauge boson,gaWW, around 10−4GeV−1, testing a previously unexplored region of parameter space. Other new particle models that lead to the same experimental signature, including ALPs coupled to gluons or photons, U(1)Bgauge bosons, up-philic scalars, and a Type-I two-Higgs doublet model, are also considered for interpretation, and new constraints on previously viable parameter space are presented in this paper.more » « less
-
Abstract FASER, the ForwArd Search ExpeRiment, is an experiment dedicated to searching for light, extremely weakly-interacting particles at CERN's Large Hadron Collider (LHC). Such particles may be produced in the very forward direction of the LHC's high-energy collisions and then decay to visible particles inside the FASER detector, which is placed 480 m downstream of the ATLAS interaction point, aligned with the beam collisions axis. FASER also includes a sub-detector, FASERν, designed to detect neutrinos produced in the LHC collisions and to study their properties. In this paper, each component of the FASER detector is described in detail, as well as the installation of the experiment system and its commissioning using cosmic-rays collected in September 2021 and during the LHC pilot beam test carried out in October 2021. FASER has successfully started taking LHC collision data in 2022, and will run throughout LHC Run 3.more » « less
An official website of the United States government

