skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Field, Jason P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mortality of tree species around the globe is increasingly driven by hotter drought and heat waves. Tree juveniles are at risk, as well as adults, and this will have a negative effect on forest dynamics and structure under climate change. Novel management options are urgently needed to reduce this mortality and positively affect forest dynamics and structure. Potential drought-ameliorating soil amendments such as nanochitosan – a biopolymer upcycled from byproducts of the seafood industry – may provide an additional set of useful tools for reducing juvenile mortality during hotter droughts. Nanochitosan promotes water and nutrient absorption in plants but has not been tested in the context of drought and heat stress. We evaluated factors affecting mortality risk and rate for drylandPinus edulisjuveniles (2–3 years old) in a growth chamber using a factorial experiment that included ambient and +4°C warmer base temperatures, with and without a 10 day +8°C heat wave, and with and without a nanochitosan soil amendment. The nanochitosan treatment reduced the relative risk of mortality, emphasizing a protective function of this soil amendment, reducing the relative risk of mortality by 37%. Importantly, the protective effects of nanochitosan soil amendment in delaying tree mortality under hotter drought and heat waves provides a new, potentially positive management treatment for tree juveniles trying to survive in the climate of the Anthropocene. 
    more » « less
  2. Tree loss is increasing rapidly due to drought- and heat-related mortality and intensifying fire activity. Consequently, the fate of many forests depends on the ability of juvenile trees to withstand heightened climate and disturbance anomalies. Extreme climatic events, such as droughts and heatwaves, are increasing in frequency and severity, and trees in mountainous regions must contend with these landscape-level climate episodes. Recent research focuses on how mortality of individual tree species may be driven by drought and heatwaves, but how juvenile mortality under these conditions would vary among species spanning an elevational gradient—given concurrent variation in climate, ecohydrology, and physiology–remains unclear. We address this knowledge gap by implementing a growth chamber study, imposing extreme drought with and without a compounding heatwave, for juveniles of five species that span a forested life zones in the Southwestern United States. Overall, the length of a progressive drought required to trigger mortality differed by up to 20 weeks among species. Inclusion of a heatwave hastened mean time to mortality for all species by about 1 week. Lower-elevation species that grow in warmer ambient conditions died earlier (Pinus ponderosain 10 weeks,Pinus edulisin 14 weeks) than did higher-elevation species from cooler ambient conditions (Picea engelmanniiandPseudotsuga menziesiiin 19 weeks, andPinus flexilisin 30 weeks). When exposed to a heatwave in conjunction with drought, mortality advanced significantly only for species from cooler ambient conditions (Pinus flexilis: 2.7 weeks earlier;Pseudotsuga menziesii: 2.0 weeks earlier). Cooler ambient temperatures may have buffered against moisture loss during drought, resulting in longer survival of higher-elevation species despite expected drought tolerance of lower-elevation species due to tree physiology. Our study suggests that droughts will play a leading role in juvenile tree mortality and will most directly impact species at warmer climate thresholds, with heatwaves in tandem with drought potentially exacerbating mortality especially of high elevation species. These responses are relevant for assessing the potential success of both natural and managed reforestation, as differential juvenile survival following episodic extreme events will determine future landscape-scale vegetation trajectories under changing climate. 
    more » « less
  3. null (Ed.)
    Drought and warming increasingly are causing widespread tree die-offs and extreme wildfires. Forest managers are struggling to improve anticipatory forest management practices given more frequent, extensive, and severe wildfire and tree die-off events triggered by “hotter drought”—drought under warmer than historical conditions. Of even greater concern is the increasing probability of multi-year droughts, or “megadroughts”—persistent droughts that span years to decades, and that under a still-warming climate, will also be hotter than historical norms. Megadroughts under warmer temperatures are disconcerting because of their potential to trigger more severe forest die-off, fire cycles, pathogens, and insect outbreaks. In this Perspective, we identify potential anticipatory and/or concurrent options for non-timber forest management actions under megadrought, which by necessity are focused more at finer spatial scales such as the stand level using higher-intensity management. These management actions build on silvicultural practices focused on growth and yield (but not harvest). Current management options that can be focused at finer scales include key silvicultural practices: selective thinning; use of carefully selected forward-thinking seed mixes; site contouring; vegetation and pest management; soil erosion control; and fire management. For the extreme challenges posed by megadroughts, management will necessarily focus even more on finer-scale, higher-intensity actions for priority locations such as fostering stand refugia; assisted stand recovery via soil amendments; enhanced root development; deep soil water retention; and shallow water impoundments. Drought-induced forest die-off from megadrought likely will lead to fundamental changes in the structure, function, and composition of forest stands and the ecosystem services they provide. 
    more » « less
  4. Summary With climate change, heat waves are becoming increasingly frequent, intense and broader in spatial extent. However, while the lethal effects of heat waves on humans are well documented, the impacts on flora are less well understood, perhaps except for crops. We summarize recent findings related to heat wave impacts including: sublethal and lethal effects at leaf and plant scales, secondary ecosystem effects, and more complex impacts such as increased heat wave frequency across all seasons, and interactions with other disturbances. We propose generalizable practical trials to quantify the critical bounding conditions of vulnerability to heat waves. Collectively, plant vulnerabilities to heat waves appear to be underappreciated and understudied, particularly with respect to understanding heat wave driven plant die‐off and ecosystem tipping points. 
    more » « less