skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fienberg, A T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2026
  2. We present details on a new measurement of the muon magnetic anomaly, a μ = ( g μ 2 ) / 2 . The result is based on positive muon data taken at Fermilab’s Muon Campus during the 2019 and 2020 accelerator runs. The measurement uses 3.1 GeV / c polarized muons stored in a 7.1-m-radius storage ring with a 1.45 T uniform magnetic field. The value of a μ is determined from the measured difference between the muon spin precession frequency and its cyclotron frequency. This difference is normalized to the strength of the magnetic field, measured using nuclear magnetic resonance. The ratio is then corrected for small contributions from beam motion, beam dispersion, and transient magnetic fields. We measure a μ = 116 592 057 ( 25 ) × 10 11 (0.21 ppm). This is the world’s most precise measurement of this quantity and represents a factor of 2.2 improvement over our previous result based on the 2018 dataset. In combination, the two datasets yield a μ ( FNAL ) = 116 592 055 ( 24 ) × 10 11 (0.20 ppm). Combining this with the measurements from Brookhaven National Laboratory for both positive and negative muons, the new world average is a μ ( exp ) = 116 592 059 ( 22 ) × 10 11 (0.19 ppm). Published by the American Physical Society2024 
    more » « less
  3. We present a new measurement of the positive muon magnetic anomaly, 𝑎𝜇≡(𝑔𝜇−2)/2, from the Fermilab Muon 𝑔−2 Experiment using data collected in 2019 and 2020. We have analyzed more than 4 times the number of positrons from muon decay than in our previous result from 2018 data. The systematic error is reduced by more than a factor of 2 due to better running conditions, a more stable beam, and improved knowledge of the magnetic field weighted by the muon distribution, 𝜔𝑝, and of the anomalous precession frequency corrected for beam dynamics effects, 𝜔𝑎. From the ratio 𝜔𝑎/𝜔𝑝, together with precisely determined external parameters, we determine 𝑎𝜇=116 592 057⁢(25)×10−11 (0.21 ppm). Combining this result with our previous result from the 2018 data, we obtain 𝑎𝜇⁡(FNAL)=116 592 055⁢(24)×10−11 (0.20 ppm). The new experimental world average is 𝑎𝜇⁡(exp)=116 592 059⁢(22)×10−11 (0.19 ppm), which represents a factor of 2 improvement in precision. 
    more » « less
  4. Abstract Beginning in 2016, the IceCube Neutrino Observatory has sent out alerts in real time containing the information of high-energy (E≳ 100 TeV) neutrino candidate events with moderate to high (≳30%) probability of astrophysical origin. In this work, we use a recent catalog of such alert events, which, in addition to events announced in real time, includes events that were identified retroactively and covers the time period of 2011–2020. We also search for additional, lower-energy neutrinos from the arrival directions of these IceCube alerts. We show how performing such an analysis can constrain the contribution of rare populations of cosmic neutrino sources to the diffuse astrophysical neutrino flux. After searching for neutrino emission coincident with these alert events on various timescales, we find no significant evidence of either minute-scale or day-scale transient neutrino emission or of steady neutrino emission in the direction of these alert events. This study also shows how numerous a population of neutrino sources has to be to account for the complete astrophysical neutrino flux. Assuming that sources have the same luminosity, anE−2.5neutrino spectrum, and number densities that follow star formation rates, the population of sources has to be more numerous than 7 × 10−9Mpc−3. This number changes to 3 × 10−7Mpc−3if number densities instead have no cosmic evolution. 
    more » « less
  5. The origin of high-energy cosmic rays, atomic nuclei that continuously impact Earth’s atmosphere, is unknown. Because of deflection by interstellar magnetic fields, cosmic rays produced within the Milky Way arrive at Earth from random directions. However, cosmic rays interact with matter near their sources and during propagation, which produces high-energy neutrinos. We searched for neutrino emission using machine learning techniques applied to 10 years of data from the IceCube Neutrino Observatory. By comparing diffuse emission models to a background-only hypothesis, we identified neutrino emission from the Galactic plane at the 4.5σ level of significance. The signal is consistent with diffuse emission of neutrinos from the Milky Way but could also arise from a population of unresolved point sources. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)
  8. Abstract Galactic PeV cosmic-ray accelerators (PeVatrons) are Galactic sources theorized to accelerate cosmic rays up to PeV in energy. The accelerated cosmic rays are expected to interact hadronically with nearby ambient gas or the interstellar medium, resulting in γ -rays and neutrinos. Recently, the Large High Altitude Air Shower Observatory (LHAASO) identified 12 γ -ray sources with emissions above 100 TeV, making them candidates for PeVatrons. While at these high energies the Klein–Nishina effect exponentially suppresses leptonic emission from Galactic sources, evidence for neutrino emission would unequivocally confirm hadronic acceleration. Here, we present the results of a search for neutrinos from these γ -ray sources and stacking searches testing for excess neutrino emission from all 12 sources as well as their subcatalogs of supernova remnants and pulsar wind nebulae with 11 yr of track events from the IceCube Neutrino Observatory. No significant emissions were found. Based on the resulting limits, we place constraints on the fraction of γ -ray flux originating from the hadronic processes in the Crab Nebula and LHAASO J2226+6057. 
    more » « less
  9. Abstract Using data from the IceCube Neutrino Observatory, we searched for high-energy neutrino emission from the gravitational-wave events detected by the advanced LIGO and Virgo detectors during their third observing run. We did a low-latency follow-up on the public candidate events released during the detectors’ third observing run and an archival search on the 80 confident events reported in the GWTC-2.1 and GWTC-3 catalogs. An extended search was also conducted for neutrino emission on longer timescales from neutron star containing mergers. Follow-up searches on the candidate optical counterpart of GW190521 were also conducted. We used two methods; an unbinned maximum likelihood analysis and a Bayesian analysis using astrophysical priors, both of which were previously used to search for high-energy neutrino emission from gravitational-wave events. No significant neutrino emission was observed by any analysis, and upper limits were placed on the time-integrated neutrino flux as well as the total isotropic equivalent energy emitted in high-energy neutrinos. 
    more » « less