Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The synthesis of cone‐shaped Pt nanoparticles featuring compressively‐strained {111} facets by depositing Pt atoms on the vertices of Pd icosahedral nanocrystals, followed by selective removal of the Pd template via wet etching, is reported. By controlling the lateral dimensions down to ca. 3 nm, together with a thickness of ca. 2 nm, the Pt cones show greatly enhanced specific and mass activities toward oxygen reduction, with values being 2.8 and 6.4 times those of commercial Pt/C, respectively. Both the strain field and the observed activity trend are rationalized using density functional theory calculations. With the formation of ultrathin linkers among the Pt cones derived from the same Pd icosahedral seed, the interconnected Pt cones acquire stronger interactions with the carbon support, preventing them from detachment and aggregation during the catalytic reaction. Even after 20 000 cycles of accelerated durability test, the Pt cones still show a mass activity 5.3 times higher than the initial value of the Pt/C.more » « less
-
Abstract We report for the first time that Pd nanocrystals can absorb H via a “single‐phase pathway” when particles with a proper combination of shape and size are used. Specifically, when Pd icosahedral nanocrystals of 7‐ and 12‐nm in size are exposed to H atoms, the H‐saturated twin boundaries can divide each particle into 20 smaller single‐crystal units in which the formation of phase boundaries is no longer favored. As such, absorption of H atoms is dominated by the single‐phase pathway and one can readily obtain PdHxwith anyx in the range of 0–0.7. When switched to Pd octahedral nanocrystals, the single‐phase pathway is only observed for particles of 7 nm in size. We also establish that the H‐absorption kinetics will be accelerated if there is a tensile strain in the nanocrystals due to the increase in lattice spacing. Besides the unique H‐absorption behaviors, the PdHx(x=0–0.7) icosahedral nanocrystals show remarkable thermal and catalytic stability toward the formic acid oxidation due tothe decrease in chemical potential for H atoms in a Pd lattice under tensile strain.more » « less
An official website of the United States government
