skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Finney, Bruce"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The role of high latitude lakes in storing and processing terrestrial organic carbon export is not well understood. We analyzed a 2.7-meter (m) -long sedimentary record from Eight Mile Lake that extends back 15,700 years to evaluate connections between productivity, organic carbon accumulation and late Quaternary environmental change in central Alaska. We analyzed macrofossil radiocarbon, alongside physical and biogeochemical properties. This dataset includes data from 12 sediment cores collected across Eight Mile Lake. These cores span time frames of 1000 - 15,700 years. This dataset includes bulk physical data, organic matter abundance, biogenic silica abundance, particle size, geochronological information, magnetic susceptibility data and hyperspectral imagery. 
    more » « less
  2. null (Ed.)
    The earliest Native Americans have often been portrayed as either megafaunal specialists or generalist foragers, but this debate cannot be resolved by studying the faunal record alone. Stable isotope analysis directly reveals the foods consumed by individuals. We present multi-tissue isotope analyses of two Ancient Beringian infants from the Upward Sun River site (USR), Alaska (~11,500 years ago). Models of fetal bone turnover combined with seasonally-sensitive taxa show that the carbon and nitrogen isotope composition of USR infant bone collagen reflects maternal diets over the summer. Using comparative faunal isotope data, we demonstrate that although terrestrial sources dominated maternal diets, salmon was also important, supported by carbon isotope analysis of essential amino acids and bone bioapatite. Tooth enamel samples indicate increased salmon use between spring and summer. Our results do not support either strictly megafaunal specialists or generalized foragers but indicate that Ancient Beringian diets were complex and seasonally structured. 
    more » « less
  3. Abstract

    Sub‐centennial oxygen (δ18O) isotopes of ostracod and authigenic calcite from Squanga Lake provides evidence of hydroclimatic extremes and a series of post‐glacial climate system reorganizations for the interior region of northwest Canada. Authigenic calciteδ18O values range from −16‰ to −21‰ and are presently similar to modern lake water and annual precipitation values. Ostracodδ18O record near identical trends with calcite, offset by +1.7 ± 0.6‰. At 11 ka BP (kaBP = thousands of years before 1950), higherδ18O values reflect decreased precipitation−evaporation (P−E) balance from residual ice sheet influences on moisture availability. A trend to lowerδ18O values until ∼8 ka BP reflects a shift to wetter conditions, and reorganization of atmospheric circulation. The last millennium and modern era are relatively dry, though not as dry as the early Holocene extreme. North Pacific climate dynamics remained an important driver of P−E balance in northwest Canada throughout the Holocene.

     
    more » « less
  4. Abstract

    Vegetation greenness has increased across much of the global land surface over recent decades. This trend is projected to continue—particularly in northern latitudes—but future greening may be constrained by nutrient availability needed for plant carbon (C) assimilation in response to CO2enrichment (eCO2). eCO2impacts foliar chemistry and function, yet the relative strengths of these effects versus climate in driving patterns of vegetative greening remain uncertain. Here we combine satellite measurements of greening with a 135 year record of plant C and nitrogen (N) concentrations and stable isotope ratios (δ13C and δ15N) in the Northern Great Plains (NGP) of North America to examine N constraints on greening. We document significant greening over the past two decades with the highest proportional increases in net greening occurring in the dries and warmest areas. In contrast to the climate dependency of greening, we find spatially uniform increases in leaf‐level intercellular CO2and intrinsic water use efficiency that track rising atmospheric CO2. Despite large spatial variation in greening, we find sustained and climate‐independent declines in foliar N over the last century. Parallel declines in foliar δ15N and increases in C:N ratios point to diminished N availability as the likely cause. The simultaneous increase in greening and decline in foliar N across our study area points to increased N use efficiency (NUE) over the last two decades. However, our results suggest that plant NUE responses are likely insufficient to sustain observed greening trends in NGP grasslands in the future.

     
    more » « less
  5. ABSTRACT

    A submillennial‐resolution record of lake water oxygen isotope composition (δ18O) from chironomid head capsules is presented from Burial Lake, northwest Alaska. The record spans the Last Glacial Maximum (LGM; ~20–16k cal abp) to the present and shows a series of large lake δ18O shifts (~5‰). Relatively low δ18O values occurred during a period covering the LGM, when the lake was a shallow, closed‐basin pond. Higher values characterize deglaciation (~16–11.5k cal abp) when the lake was still closed but lake levels were higher. A rapid decline between ~11 and 10.5k cal abpindicates that lake levels rose to overflowing. Lake δ18O values are interpreted to reflect the combined effects of changes in lake hydrology, growing season temperature and meteoric source water as well as large‐scale environmental changes impacting this site, including opening of the Bering Strait and shifts in atmospheric circulation patterns related to ice‐sheet dynamics. The results indicate significant shifts in precipitation minus evaporation across the late Pleistocene to early Holocene transition, which are consistent with temporal patterns of vegetation change and paludification. This study provides new perspectives on the paleohydrology of eastern Beringia concomitant with human migration and major turnover in megafaunal assemblages.

     
    more » « less
  6. Abstract

    Dryland ecosystems are experiencing shifts in rainfall and plant community composition, which are expected to alter cycling and storage of soil carbon (C). Few experiments have been conducted to examine long‐term effects on (1) soil organic C (SOC) pools throughout the soil profile, and (2) soil inorganic C (SIC) pools as they relate to dynamic changes in C storage and climate change. We measured SOC and SIC from 0 to 1 m beneath plants and in adjacent interplant microsites following nearly 20 yr of experimental manipulations of plant community (native sagebrush steppe or monoculture of exotic crested wheatgrass) and the amount and timing of water availability (ambient, or doubling of annual rainfall in the dormant, DORM, or growing, GROW, season). Under sagebrush plants, GROW increased both SOC and SIC pools, resulting in total carbon (TC) pools 15% greater than plots receiving ambient precipitation, while DORM decreased SOC and SIC pools, decreasing TC pools 20% from ambient. Under crested wheatgrass plants, GROW increased SOC by 73% but decreased SIC by 11% relative to ambient, netting no change in TC pools, while DORM SIC pools were 5% greater than ambient, with no significant increase in either SOC or TC pools. GROW significantly increased TC pools for interplant microsites, regardless of vegetation treatment. At the community scale and summing C pools weighted by percent patch cover, patterns of TC pool were similar to plot measurements. Our findings suggest that sagebrush communities can become a net C source to the atmosphere with increases in dormant season rainfall rather than a C sink as previously predicted.We also provide evidence of SIC as an important and dynamic C sequestration mechanism in drylands. Consideration of vegetation type, all or most of the soil profile, and both organic and inorganic C pools are all important to accurately predict C sequestration with changing climate and disturbance in drylands.

     
    more » « less