Recently, evidence for a conducting surface state (CSS) below 19 K was reported for the correlated
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
d -electron small gap semiconductor FeSi. In the work reported herein, the CSS and the bulk phase of FeSi were probed via electrical resistivity ρ measurements as a function of temperatureT , magnetic fieldB to 60 T, and pressureP to 7.6 GPa, and by means of a magnetic field-modulated microwave spectroscopy (MFMMS) technique. The properties of FeSi were also compared with those of the Kondo insulator SmB6to address the question of whether FeSi is ad -electron analogue of anf -electron Kondo insulator and, in addition, a “topological Kondo insulator” (TKI). The overall behavior of the magnetoresistance of FeSi at temperatures above and below the onset temperatureT S= 19 K of the CSS is similar to that of SmB6. The two energy gaps, inferred from the ρ(T ) data in the semiconducting regime, increase with pressure up to about 7 GPa, followed by a drop which coincides with a sharp suppression ofT S. Several studies of ρ(T ) under pressure on SmB6reveal behavior similar to that of FeSi in which the two energy gaps vanish at a critical pressure near the pressure at whichT Svanishes, although the energy gaps in SmB6initially decrease with pressure, whereas in FeSi they increase with pressure. The MFMMS measurements showed a sharp feature atT S≈ 19 K for FeSi, which could be due to ferromagnetic ordering of the CSS. However, no such feature was observed atT S≈ 4.5 K for SmB6. -
The impact of nonmagnetic and magnetic impurities on topological insulators is a central focus concerning their fundamental physics and possible spintronics and quantum computing applications. Combining scanning tunneling spectroscopy with transport measurements, we investigate, both locally and globally, the effect of nonmagnetic and magnetic substituents in SmB 6 , a predicted topological Kondo insulator. Around the so-introduced substitutents and in accord with theoretical predictions, the surface states are locally suppressed with different length scales depending on the substituent’s magnetic properties. For sufficiently high substituent concentrations, these states are globally destroyed. Similarly, using a magnetic tip in tunneling spectroscopy also resulted in largely suppressed surface states. Hence, a destruction of the surface states is always observed close to atoms with substantial magnetic moment. This points to the topological nature of the surface states in SmB 6 and illustrates how magnetic impurities destroy the surface states from microscopic to macroscopic length scales.more » « less