skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Magnetic and defect probes of the SmB 6 surface state
The impact of nonmagnetic and magnetic impurities on topological insulators is a central focus concerning their fundamental physics and possible spintronics and quantum computing applications. Combining scanning tunneling spectroscopy with transport measurements, we investigate, both locally and globally, the effect of nonmagnetic and magnetic substituents in SmB 6 , a predicted topological Kondo insulator. Around the so-introduced substitutents and in accord with theoretical predictions, the surface states are locally suppressed with different length scales depending on the substituent’s magnetic properties. For sufficiently high substituent concentrations, these states are globally destroyed. Similarly, using a magnetic tip in tunneling spectroscopy also resulted in largely suppressed surface states. Hence, a destruction of the surface states is always observed close to atoms with substantial magnetic moment. This points to the topological nature of the surface states in SmB 6 and illustrates how magnetic impurities destroy the surface states from microscopic to macroscopic length scales.  more » « less
Award ID(s):
1708199
PAR ID:
10093171
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
4
Issue:
11
ISSN:
2375-2548
Page Range / eLocation ID:
eaau4886
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Electric currents have the intriguing ability to induce magnetization in nonmagnetic crystals with sufficiently low crystallographic symmetry. Some associated phenomena include the non-linear anomalous Hall effect in polar crystals and the nonreciprocal directional dichroism in chiral crystals when magnetic fields are applied. In this work, we demonstrate that the same underlying physics is also manifested in the electronic tunneling process between the surface of a nonmagnetic chiral material and a magnetized scanning probe. In the paramagnetic but chiral metallic compound Co1/3NbS2, the magnetization induced by the tunneling current is shown to become detectable by its coupling to the magnetization of the tip itself. This results in a contrast across different chiral domains, achieving atomic-scale spatial resolution of structural chirality. To support the proposed mechanism, we used first-principles theory to compute the chirality-dependent current-induced magnetization and Berry curvature in the bulk of the material. Our demonstration of this magnetochiral tunneling effect opens up an avenue for investigating atomic-scale variations in the local crystallographic symmetry and electronic structure across the structural domain boundaries of low-symmetry nonmagnetic crystals. 
    more » « less
  2. We study Andreev bound states in the presence of a magnetic moment in a ferromagnetic topological insulator in superconductor/magnetic topological insulator/superconductor Josephson junctions. We analytically find zero energy states for out-of-plane and in-plane directions of the magnetic moment. In the case of the out-of-plane magnetic moment, the energy is independent of the scattering angle. If both magnetic and nonmagnetic scattering mechanisms are considered, the zero energy state requires the scattering angle to the electrode to be zero as in the case of Majorana fermions. In the presence of an in-plane magnetic moment, the energy band always exhibits a nonvanishing gap if the magnetic moment has a nonzero component, i.e., there are no zero energy states. Here we assume that the electrons tunnel in the direction. If the magnetic moment is aligned with the tunneling direction, the zero energy states always exist and are independent of the scattering angle. Contrary to the Majorana fermion case, the phase shift between two superconductor electrodes is not. This phase difference depends on the system parameters such as the Fermi velocity, the barrier potential magnitude, the exchange coupling between localized and delocalized electrons, and the component of the magnetic moment. We find an anomalous Josepheson current when the magnetic moment has a component in the direction, where the current is nonzero despite. This is due to the violation of time reversal and chiral symmetries in the Josepheson junction. This leads to the observation of the Josephson Diode effect as well. For large scattering magnitudes, we find that the transmission coefficient approaches one at larger barrier magnitudes. This is the main reason why in superconductor/magnetic topological insulator/superconductor Josephson junctions critical current is much higher than in superconductor/normal metal/superconductor junctions. This effect is similar in origin to Klein Tunneling for relativistic Dirac electrons. In the case of nonmagnetic and out-of-plane magnetic scatterings, the current vanishes when the barrier amplitudes are approximately equal and large. This effect cannot be explained by the relativistic nature of the Dirac equation and is specific to the model. We also study temperature dependencies for in- and out-of-plane magnetic moments. We find that current at high temperatures is significantly smaller than at low temperatures. The current approaches a constant value at low temperatures, at approximately. This value depends on the other system parameters. The existence of new zero energy states in magnetic topological insulators in superconductor/magnetic topological insulator/superconductor Josephson junctions opens new opportunities in quantum computing because of the presence of the additional symmetry with respect to the scattering angle. 
    more » « less
  3. Recently, evidence for a conducting surface state (CSS) below 19 K was reported for the correlatedd-electron small gap semiconductor FeSi. In the work reported herein, the CSS and the bulk phase of FeSi were probed via electrical resistivity ρ measurements as a function of temperatureT, magnetic fieldBto 60 T, and pressurePto 7.6 GPa, and by means of a magnetic field-modulated microwave spectroscopy (MFMMS) technique. The properties of FeSi were also compared with those of the Kondo insulator SmB6to address the question of whether FeSi is ad-electron analogue of anf-electron Kondo insulator and, in addition, a “topological Kondo insulator” (TKI). The overall behavior of the magnetoresistance of FeSi at temperatures above and below the onset temperatureTS= 19 K of the CSS is similar to that of SmB6. The two energy gaps, inferred from the ρ(T) data in the semiconducting regime, increase with pressure up to about 7 GPa, followed by a drop which coincides with a sharp suppression ofTS. Several studies of ρ(T) under pressure on SmB6reveal behavior similar to that of FeSi in which the two energy gaps vanish at a critical pressure near the pressure at whichTSvanishes, although the energy gaps in SmB6initially decrease with pressure, whereas in FeSi they increase with pressure. The MFMMS measurements showed a sharp feature atTS≈ 19 K for FeSi, which could be due to ferromagnetic ordering of the CSS. However, no such feature was observed atTS≈ 4.5 K for SmB6
    more » « less
  4. The resurgence of interest in Kondo insulators has been driven by two major mysteries: the presence of metallic surface states and the observation of quantum oscillations. To further explore these mysteries, it is crucial to investigate another similar system beyond the two existing ones, SmB6and YbB12. Here, we address this by reporting on a Kondo insulator, U3Bi4Ni3. Our transport measurements reveal that a surface state emerges below 250 kelvin and dominates transport properties below 150 kelvin, which is well above the temperature scale of SmB6and YbB12. At low temperatures, the surface conductivity is about one order of magnitude higher than the bulk. The robustness of the surface state indicates that it is inherently protected. The similarities and differences between U3Bi4Ni3and the other two Kondo insulators will provide valuable insights into the nature of metallic surface states in Kondo insulators and their interplay with strong electron correlations. 
    more » « less
  5. We consider theoretically the physics of bulk topological superconductivity accompanied by boundary non- Abelian Majorana zero modes in semiconductor-superconductor (SM-SC) hybrid systems consisting of finite wires in the presence of correlated disorder arising from random charged impurities. We find the system to manifest a highly complex behavior due to the subtle interplay between finite wire length and finite disorder, leading to copious low-energy in-gap states throughout the wire and considerably complicating the interpretation of tunneling spectroscopic transport measurements used extensively to search forMajorana modes. The presence of disorder-induced low-energy states may lead to the nonexistence of end Majorana zero modes even when tunneling spectroscopy manifests zero-bias conductance peaks in local tunneling and signatures of bulk gap closing/reopening in the nonlocal transport. In short wires within the intermediate disorder regime, apparent topology may manifest in small ranges (“patches”) of parameter values, which may or may not survive the longwire limit depending on various details. Because of the dominance of disorder-induced in-gap states, the system may even occasionally have an appropriate topological invariant without manifesting isolated end Majorana zero modes. We discuss our findings in the context of a recent breakthrough experiment from Microsoft reporting the simultaneous observations of zero-bias conductance peaks in local tunneling and gap opening in nonlocal transport within small patches of parameter space. Based on our analysis, we believe that the disorder strength to SC-gap ratio must decrease further for the definitive realization of non-Abelian Majorana zero modes in SM-SC devices. 
    more » « less