skip to main content


Search for: All records

Creators/Authors contains: "Flynn, Patrick"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Fluorescently labeled proteins absorb and emit light, appearing as Gaussian spots in fluorescence imaging. When fluorescent tags are added to cytoskeletal polymers such as microtubules, a line of fluorescence and even non-linear structures results. While much progress has been made in techniques for imaging and microscopy, image analysis is less well-developed. Current analysis of fluorescent microtubules uses either manual tools, such as kymographs, or automated software. As a result, our ability to quantify microtubule dynamics and organization from light microscopy remains limited. Despite the development of automated microtubule analysis tools for in vitro studies, analysis of images from cells often depends heavily on manual analysis. One of the main reasons for this disparity is the low signal-to-noise ratio in cells, where background fluorescence is typically higher than in reconstituted systems. Here, we present the Toolkit for Automated Microtubule Tracking (TAMiT), which automatically detects, optimizes, and tracks fluorescent microtubules in living yeast cells with sub-pixel accuracy. Using basic information about microtubule organization, TAMiT detects linear and curved polymers using a geometrical scanning technique. Images are fit via an optimization problem for the microtubule image parameters that are solved using non-linear least squares in Matlab. We benchmark our software using simulated images and show that it reliably detects microtubules, even at low signal-to-noise ratios. Then, we use TAMiT to measure monopolar spindle microtubule bundle number, length, and lifetime in a large dataset that includes several S. pombe mutants that affect microtubule dynamics and bundling. The results from the automated analysis are consistent with previous work and suggest a direct role for CLASP/Cls1 in bundling spindle microtubules. We also illustrate automated tracking of single curved astral microtubules in S. cerevisiae, with measurement of dynamic instability parameters. The results obtained with our fully-automated software are similar to results using hand-tracked measurements. Therefore, TAMiT can facilitate automated analysis of spindle and microtubule dynamics in yeast cells. 
    more » « less
  2. This paper describes the results of the 2023 edition of the “LivDet” series of iris presentation attack detection (PAD) competitions. New elements in this fifth competition include (1) GAN-generated iris images as a category of presentation attack instruments (PAI), and (2) an evaluation of human accuracy at detecting PAI as a reference benchmark. Clarkson University and the University of Notre Dame contributed image datasets for the competition, composed of samples representing seven different PAI categories, as well as baseline PAD algorithms. Fraunhofer IGD, Beijing University of Civil Engineering and Architecture, and Hochschule Darmstadt contributed results for a total of eight PAD algorithms to the competition. Accuracy results are analyzed by different PAI types, and compared to human accuracy. Overall, the Fraunhofer IGD algorithm, using an attention-based pixel-wise binary supervision network, showed the best-weighted accuracy results (average classification error rate of 37.31%), while the Beijing University of Civil Engineering and Architecture’s algorithm won when equal weights for each PAI were given (average classification rate of 22.15%). These results suggest that iris PAD is still a challenging problem. 
    more » « less
  3. The understanding of chaotic systems is challenging not only for theoretical research but also for many important applications. Chaotic behavior is found in many nonlinear dynamical systems, such as those found in climate dynamics, weather, the stock market, and the space-time dynamics of virus spread. A reliable solution for these systems must handle their complex space-time dynamics and sensitive dependence on initial conditions. We develop a deep learning framework to push the time horizon at which reliable predictions can be made further into the future by better evaluating the consequences of local errors when modeling nonlinear systems. Our approach observes the future trajectories of initial errors at a time horizon to model the evolution of the loss to that point with two major components: 1) a recurrent architecture, Error Trajectory Tracing, that is designed to trace the trajectories of predictive errors through phase space, and 2) a training regime, Horizon Forcing, that pushes the model’s focus out to a predetermined time horizon. We validate our method on classic chaotic systems and real-world time series prediction tasks with chaotic characteristics, and show that our approach outperforms the current state-of-the-art methods. 
    more » « less
  4. Over the past decade, SIMD (single instruction multiple data) or vector architectures have made significant advances, now existing across a wide range of devices from commodity CPUs to high performance computing (HPC) cores. Intel's AVX (Advanced Vector Extensions) architecture has been one of the most popular SIMD extensions to commodity and HPC CPUs from Intel. Over the past few years, Arm has made significant inroads with its new SVE (Scalable Vector Extension), used in the supercomputer of the top place on the Top500 list. As SIMD has become more advanced and more important, it has become equally important the compilers support these architecture extensions. In this paper, we present our approach of source-to-source compiler transformation of explicit vectorization constructs using the OpenMP SIMD directive. We present the design of a unified IR that is easily translated to AVX and SVE vector architectures. Finally, we conduct performance evaluations on Intel AVX and Arm SVE to demonstrate how this method of vectorization can bridge the gap between auto- and manual- vectorization. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
    Abstract: We construct (modified) scattering operators for the Vlasov–Poisson system in three dimensions, mapping small asymptotic dynamics as t→ - ∞ to asymptotic dynamics as t → + ∞. The main novelty is the construction of modified wave operators, but we also obtain a new simple proof of modified scattering. Our analysis is guided by the Hamiltonian structure of the Vlasov–Poisson system. Via a pseudo-conformal inversion, we recast the question of asymptotic behavior in terms of local in time dynamics of a new equation with singular coefficients which is approximately integrated using a generating function. 
    more » « less
  7. null (Ed.)