Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract As the field of theranostics expands, an imminent need arises for multifaceted polymer‐based nanotechnologies for clinical application. In this work, reversible addition‐fragmentation chain transfer (RAFT) aqueous emulsion polymerization is used to form19F‐containing amphiphilic hybrid block copolymers (HBCs). Employing a cationic dendritic macromolecular chain transfer agent (mCTA), polymer frameworks comprised of chemically distinctive blocks of differing architectures (i.e., dendritic and grafted/linear) are strategically designed and synthesized. In aqueous media, self‐assembled polymer nanoparticles (PNPs) are formed. Their physicochemical properties and their potential as biomaterials for MRI applications are assessed. By showcasing a newly established mCTA and using these resulting PNPs as imaging probes, the work expands the design space of RAFT polymerization in biomedical research, paving the way for the development of more effective and versatile MRI imaging tools.more » « less
-
RNAi is an evolutionarily fluid mechanism with dramatically different activities across animal phyla. One major group where there has been little investigation is annelid worms. Here, the small RNAs of the polychaete developmental model Capitella teleta are profiled across development. As is seen with nearly all animals, nearly 200 microRNAs were found with 58 high-confidence novel species. Greater miRNA diversity was associated with later stages consistent with differentiation of tissues. Outside miRNA, a distinct composition of other small RNA pathways was found. Unlike many invertebrates, an endogenous siRNA pathway was not observed, indicating pathway loss relative to basal planarians. No processively generated siRNA-class RNAs could be found arising from dsRNA precursors. This has a significant impact on RNAi technology development for this group of animals. Unlike the apparent absence of siRNAs, a significant population of piRNAs was observed. For many piRNAs, phasing and ping-pong biogenesis pathways were identified. Interestingly, piRNAs were found to be highly expressed during early development, suggesting a potential role in regulation in metamorphosis. Critically, the configuration of RNAi factors in C. teleta is found in other annelids and mollusks, suggesting that similar biology is likely to be present in the wider clade. This study is the first in providing comprehensive analysis of small RNAs in annelids.more » « less
-
Effects of nanoaggregation on isoindigo-based fluorophores for near-infrared bioimaging applicationsIn this work, we have taken a donor–acceptor–donor (D–A–D) fluorophore ( II-EDOT-TPA ) and encapsulated it using a linear dendritic block copolymer (LDBC). In parallel, a polyethylene glycol derivative ( PEG-II-EDOT-TPA ) was synthesized. The self-assembly and colloidal properties of both nanoaggregates were comparatively assessed. Photophysical and morphological characterization of the LDBC encapsulated II-EDOT-TPA and PEG-II-EDOT-TPA nanoaggregates was performed, which showed the photophysical and morphological properties differed greatly when comparing the two. Both nanoaggregate types were incubated with HEK-293 cells in order to measure cell viability and perform confocal fluorescence microscopy. Minimal cytotoxicity values (<20%) were seen with the two nanoaggregate forms, while both types of nanoaggregates were found to accumulate into the lysosomes of the HEK-293 cells. This work provides fascinating insights into NIR fluorophore design and methods to effectively alter the photophysical and morphological properties of the nanoaggregates for bio-imaging purposes.more » « less
-
Linear-dendritic block copolymers (LDBCs) have emerged as promising materials for drug delivery applications, with their hybrid structure exploiting advantageous properties of both linear and dendritic polymers. LDBCs have promising encapsulation efficiencies that can be used to encapsulate both hydrophobic and hydrophilic dyes for bioimaging, cancer therapeutics, and small biomolecules. Additionally, LDBCS can be readily functionalized with varying terminal groups for more efficient targeted delivery. However, depending on structural composition and surface properties, LDBCs also exhibit high dispersities ( Đ ), poor shelf-life, and potentially high cytotoxicity to non-target interfacing blood cells during intravenous drug delivery. Here, we show that choline carboxylic acid-based ionic liquids (ILs) electrostatically solvate LDBCs by direct dissolution and form stable and biocompatible IL-integrated LDBC nano-assemblies. These nano-assemblies are endowed with red blood cell-hitchhiking capabilities and show altered cellular uptake behavior ex vivo . When modified with choline and trans -2-hexenoic acid, IL-LDBC dispersity dropped by half compared to bare LDBCs, and showed a significant shift of the cationic surface charge towards neutrality. Proton nuclear magnetic resonance spectroscopy evidenced twice the total amount of IL on the LDBCs relative to an established IL-linear PLGA platform. Transmission electron microscopy suggested the formation of a nanoparticle surface coating, which acted as a protective agent against RBC hemolysis, reducing hemolysis from 73% (LDBC) to 25% (IL-LDBC). However, dramatically different uptake behavior of IL-LDBCs vs. IL-PLGA NPs in RAW 264.7 macrophage cells suggests a different conformational IL-NP surface assembly on the linear versus the linear-dendritic nanoparticles. These results suggest that by controlling the physical chemistry of polymer-IL interactions and assembly on the nanoscale, biological function can be tailored toward the development of more effective and more precisely targeted therapies.more » « less
-
null (Ed.)RNAi promises to reshape pest control by being nontoxic, biodegradable, and species specific. However, due to the plastic nature of RNAi, there is a significant variability in responses. In this study, we investigate small RNA pathways and processing of ingested RNAi trigger molecules in a hemipteran plant pest, the whitefly Bemisia tabaci . Unlike Drosophila , where the paradigm for insect RNAi technology was established, whitefly has abundant somatic piwi-associated RNAs (piRNAs). Long regarded as germline restricted, piRNAs are common in the soma of many invertebrates. We sought to exploit this for a novel gene silencing approach. The main principle of piRNA biogenesis is the recruitment of target RNA fragments into the pathway. As such, we designed synthetic RNAs to possess complementarity to the loci we annotated. Following feeding of these exogenous piRNA triggers knockdown as effective as conventional siRNA-only approaches was observed. These results demonstrate a new approach for RNAi technology that could be applicable to dsRNA-recalcitrant pest species and could be fundamental to realizing insecticidal RNAi against pests.more » « less
-
null (Ed.)The challenges faced with current fluorescence imaging agents have motivated us to study two nanostructures based on a hydrophobic dye, 6 H -pyrrolo[3,2- b :4,5- b ’]bis [1,4]benzothiazine (TRPZ). TRPZ is a heteroacene with a rigid, pi-conjugated structure, multiple reactive sites, and unique spectroscopic properties. Here we coupled TRPZ to a tert-butyl carbamate (BOC) protected 2,2-bis(hydroxymethyl)propanoic acid (bisMPA) dendron via azide-alkyne Huisgen cycloaddition. Deprotection of the protected amine groups on the dendron afforded a cationic terminated amphiphile, TRPZ-bisMPA . TRPZ-bisMPA was nanoprecipitated into water to obtain nanoparticles (NPs) with a hydrodynamic radius that was <150 nm. For comparison, TRPZ-PG was encapsulated in pluronic-F127 (Mw = 12 kD), a polymer surfactant to afford NPs almost twice as large as those formed by TRPZ-bisMPA . Size and stability studies confirm the suitability of the TRPZ-bisMPA NPs for biomedical applications. The photophysical properties of the TRPZ-bisMPA NPs show a quantum yield of 49%, a Stokes shift of 201 nm (0.72 eV) and a lifetime of 6.3 ns in water. Further evidence was provided by cell viability and cellular uptake studies confirming the low cytotoxicity of TRPZ-bisMPA NPs and their potential in bioimaging.more » « less
-
Shortwave infrared (SWIR) emission has great potential for deep-tissue in vivo biological imaging with high resolution. In this article, the synthesis and characterization of two new xanthene-based RosIndolizine dyes coded Ph RosIndz and tol RosIndz is presented. The dyes are characterized via femtosecond transient absorption spectroscopy as well as steady-state absorption and emission spectroscopies. The emission of these dyes is shown in the SWIR region with peak emission at 1097 nm. Tol RosIndz was encapsulated with an amphiphilic linear dendritic block co-polymer (LDBC) coded 10-PhPCL-G3 with high uptake yield. Further, cellular toxicity was examined in vitro using HEK (human embryonic kidney) cells where a >90% cell viability was observed at practical concentrations of the encapsulated dye which indicates low toxicity and reasonable biocompatibility.more » « less
An official website of the United States government
