skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Foley, Ryan J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The discovery of a second electromagnetic counterpart to a gravitational wave event represents a critical goal in the field of multi-messenger astronomy. In order to determine the optimal strategy for achieving this goal, we perform comprehensive simulations comparing two potential paths forward: continuing the current LIGO-Virgo-KAGRA (LVK) observing run, O4, versus temporarily shutting down the detectors for upgrades before beginning the next observing run, O5. Our simulations incorporate current O4 instrument sensitivities and duty cycles, as well as projected configurations for O5, while accounting for variables such as binary neutron star merger rates, system properties, viewing angles, dust extinction, and kilonova (KN) observables. Our results indicate that a KN discovery would occur 12 5 125 + 253 days (middle 50% interval) sooner in O5 compared to O4, suggesting that extending O4 would lead to faster discovery if the shutdown period between runs is  >4 months. Moreover, for 88% of our simulations, continuing O4 results in earlier KN discovery when compared to the expected two-year shutdown between O4 and O5. Given these findings and the critical importance of avoiding a  >10 yr gap between first and second electromagnetic counterpart discoveries, we suggest LVK consider extending O4 operations for as long as feasible prior to shutting down for critical upgrades. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Context.Core-collapse supernovae (CCSNe) may have contributed a significant amount of dust in the early Universe. Freshly formed coolant molecules (e.g., CO) and warm dust can be found in CCSNe as early as ∼100 d after the SN explosion, allowing the study of their evolution with time series observations. Aims.Through study of the Type II SN 2023ixf, we aim to investigate the temporal evolution of the temperature, velocity, and mass of CO and compare them with other CCSNe, exploring their implications for the dust formation in CCSNe. From observations of velocity profiles of lines of other species (e.g., H and He), we also aim to characterize and understand the interaction of the SN ejecta with preexisting circumstellar material (CSM). Methods.We present a time series of 16 near-infrared spectra of SN 2023ixf from 9 to 307 d, taken with multiple instruments: Gemini/GNIRS, Keck/NIRES, IRTF/SpeX, and MMT/MMIRS. Results.The early (t ≲ 70 d) spectra indicate interaction between the expanding ejecta and nearby CSM. Att ≲ 20 d, intermediate-width line profiles corresponding to the ejecta-wind interaction are superposed on evolving broad P Cygni profiles. We find intermediate-width and narrow lines in the spectra untilt ≲ 70 d, which suggest continued CSM interaction. We also observe and discuss high-velocity absorption features in Hαand Hβline profiles formed by CSM interaction. The spectra contain CO first overtone emission between 199 and 307 d after the explosion. We modeled the CO emission and found the CO to have a higher velocity (3000–3500 km s−1) than that in Type II-pec SN 1987A (1800–2000 km s−1) during similar phases (t = 199 − 307 d) and a comparable CO temperature to SN 1987A. A flattened continuum at wavelengths greater than 1.5 μm accompanies the CO emission, suggesting that the warm dust is likely formed in the ejecta. The warm dust masses are estimated to be on the order of ∼10−5 M
    more » « less
    Free, publicly-accessible full text available November 1, 2026
  3. Abstract We present a detailed analysis of AT 2020nov, a tidal disruption event (TDE) in the center of its host galaxy, located at a redshift ofz= 0.083. AT 2020nov exhibits unique features, including double-peaked Balmer emission lines, a broad UV/optical flare, and a peak log luminosity in the extreme-ultraviolet (EUV) estimated at 45.6 6 0.33 + 0.10 erg s 1 . A late-time X-ray flare was also observed, reaching an absorbed luminosity of 1.67 × 1043erg s−1approximately 300 days after the UV/optical peak. Multiwavelength coverage, spanning optical, UV, X-ray, and mid-infrared (MIR) bands, reveals a complex spectral energy distribution (SED) that includes MIR flaring indicative of dust echoes, suggesting a dust covering fraction consistent with typical TDEs. Spectral modeling indicates the presence of an extended, quiescent disk around the central supermassive black hole with a radius of 5.0 6 0.77 + 0.59 × 1 0 4 R g . The multicomponent SED model, which includes a significant EUV component, suggests that the primary emission from the TDE is reprocessed by this extended disk, producing the observed optical and MIR features. The lack of strong active galactic nuclei signatures in the host galaxy, combined with the quiescent disk structure, highlights AT 2020nov as a rare example of a TDE occurring in a galaxy with a dormant but extended preexisting accretion structure. 
    more » « less
    Free, publicly-accessible full text available April 2, 2026
  4. Abstract Supernova (SN) 2014C is a rare transitional event that exploded as a hydrogen-poor, helium-rich Type Ib SN and subsequently interacted with a hydrogen-rich circumstellar medium (CSM) a few months postexplosion. This unique interacting object provides an opportunity to probe the mass-loss history of a stripped-envelope SN progenitor. Using the James Webb Space Telescope (JWST), we observed SN 2014C with the Mid-Infrared Instrument Medium Resolution Spectrometer at 3477 days postexplosion (rest frame), and the Near-Infrared Spectrograph Integral Field Unit at 3568 days postexplosion, covering 1.7–25μm. The bolometric luminosity indicates that the SN is still interacting with the same CSM that was observed with the Spitzer Space Telescope 40–1920 days postexplosion. JWST spectra and near-contemporaneous optical and near-infrared spectra show strong [Neii] 12.831μm, He 1.083μm, Hα, and forbidden oxygen ([Oi]λλ6300, 6364, [Oii]λλ7319, 7330, and [Oiii]λλ4959, 5007) emission lines with asymmetric profiles, suggesting a highly asymmetric CSM. The mid-IR continuum can be explained by ∼0.036Mof carbonaceous dust at ∼300 K and ∼0.043Mof silicate dust at ∼200 K. The observed dust mass has increased tenfold since the last Spitzer observation 4 yr ago, with evidence suggesting that new grains have condensed in the cold dense shell between the forward and reverse shocks. This dust mass places SN 2014C among the dustiest SNe in the mid-IR and supports the emerging observational trend that SN explosions produce enough dust to explain the observed dust mass at high redshifts. 
    more » « less
    Free, publicly-accessible full text available May 23, 2026
  5. Abstract Dust from core-collapse supernovae (CCSNe), specifically Type IIP supernovae (SNe IIP), has been suggested to be a significant source of the dust observed in high-redshift galaxies. CCSNe eject large amounts of newly formed heavy elements, which can condense into dust grains in the cooling ejecta. However, infrared (IR) observations of typical CCSNe generally measure dust masses that are too small to account for the dust production needed at high redshifts. Type IIn SNe (SNe IIn), classified by their dense circumstellar medium, are also known to exhibit strong IR emission from warm dust, but the dust origin and heating mechanism have generally remained unconstrained because of limited observational capabilities in the mid-IR (MIR). Here, we present a JWST/MIRI Medium Resolution Spectrograph spectrum of the SN IIn SN 2005ip nearly 17 yr post-explosion. The SN IIn SN 2005ip is one of the longest-lasting and most well-studied SNe observed to date. Combined with a Spitzer MIR spectrum of SN 2005ip obtained in 2008, this data set provides a rare 15 yr baseline, allowing for a unique investigation of the evolution of dust. The JWST spectrum shows the emergence of an optically thin silicate dust component (≳0.08M) that is either not present or more compact/optically thick in the earlier Spitzer spectrum. Our analysis shows that this dust is likely newly formed in the cold, dense shell (CDS), between the forward and reverse shocks, and was not preexisting at the time of the explosion. There is also a smaller mass of carbonaceous dust (≳0.005M) in the ejecta. These observations provide new insights into the role of SN dust production, particularly within the CDS, and its potential contribution to the rapid dust enrichment of the early Universe. 
    more » « less
    Free, publicly-accessible full text available May 29, 2026
  6. Abstract We present new JWST/MIRI Medium Resolution Spectroscopy and Keck spectra of SN 1995N obtained in 2022–2023, more than 10,000 days after the supernova (SN) explosion. These spectra are among the latest direct detections of a core-collapse SN, both through emission lines in the optical and thermal continuum from infrared (IR) dust emission. The new IR data show that dust heating from radiation produced by the ejecta interacting with circumstellar matter is still present but greatly reduced from when SN 1995N was observed by the Spitzer Space Telescope and WISE in 2009/2010 and 2018, when the dust mass was estimated to be 0.4M. New radiative-transfer modeling suggests that the dust mass and grain size may have increased between 2010 and 2023. The new data can alternatively be well fit with a dust mass of 0.4Mand a much reduced heating source luminosity. The new late-time spectra show unusually strong oxygen forbidden lines, stronger than the Hαemission. This indicates that SN 1995N may have exploded as a stripped-envelope SN, which then interacted with a massive H-rich circumstellar shell, changing it from intrinsically Type Ib/c to Type IIn. The late-time spectrum results when the reverse shock begins to excite the inner H-poor, O-rich ejecta. This change in the spectrum is rarely seen but marks the start of the transition from SN to SN remnant. 
    more » « less
    Free, publicly-accessible full text available September 23, 2026
  7. ABSTRACT We present a comprehensive, configurable open-source software framework for estimating the rate of electromagnetic detection of kilonovae (KNe) associated with gravitational wave detections of binary neutron star (BNS) mergers. We simulate the current LIGO-Virgo-KAGRA (LVK) observing run (O4) using current sensitivity and uptime values as well as using predicted sensitivites for the next observing run (O5). We find the number of discoverable kilonovae during LVK O4 to be $${ 1}_{- 1}^{+ 4}$$ or $${ 2 }_{- 2 }^{+ 3 }$$, (at 90 per cent confidence) depending on the distribution of NS masses in coalescing binaries, with the number increasing by an order of magnitude during O5 to $${ 19 }_{- 11 }^{+ 24 }$$. Regardless of mass model, we predict at most five detectable KNe (at 95 per cent confidence) in O4. We also produce optical and near-infrared light curves that correspond to the physical properties of each merging system. We have collated important information for allocating observing resources for search and follow-up observations, including distributions of peak magnitudes in several broad-bands and time-scales for which specific facilities can detect each KN. The framework is easily adaptable, and new simulations can quickly be produced in response to updated information such as refined merger rates and NS mass distributions. Finally, we compare our suite of simulations to the thus-far completed portion of O4 (as of 2023, October 14), finding a median number of discoverable KNe of 0 and a 95 percentile upper limit of 2, consistent with no detections so far in O4. 
    more » « less
  8. Abstract We present panchromatic optical + near-infrared (NIR) + mid-infrared (MIR) observations of the intermediate-luminosity Type Iax supernova (SN Iax) 2024pxl and the extremely low-luminosity SN Iax 2024vjm. JWST observations provide unprecedented MIR spectroscopy of SN Iax, spanning from +11 to +42 day past maximum light. We detect forbidden emission lines in the MIR at these early times while the optical and NIR are dominated by permitted lines with an absorption component. Panchromatic spectra at early times can thus simultaneously show nebular and photospheric lines, probing both inner and outer layers of the ejecta. We identify spectral lines not seen before in SN Iax, including [Mgii] 4.76μm, [Mgii] 9.71μm, [Neii] 12.81μm, and isolated Oi2.76μm that traces unburned material. Forbidden emission lines of all species are centrally peaked with similar kinematic distributions, indicating that the ejecta are well mixed in both SN 2024pxl and SN 2024vjm, a hallmark of pure deflagration explosion models. Radiative transfer modeling of SN 2024pxl shows good agreement with a weak deflagration of a near-Chandrasekhar-mass white dwarf, but additional IR flux is needed to match the observations, potentially attributable to a surviving remnant. Similarly, we find SN 2024vjm is also best explained by a weak deflagration model, despite the large difference in luminosity between the two supernovae. Future modeling should push to even weaker explosions and include the contribution of a bound remnant. Our observations demonstrate the diagnostic power of panchromatic spectroscopy for unveiling explosion physics in thermonuclear supernovae. 
    more » « less
    Free, publicly-accessible full text available August 13, 2026
  9. Abstract A tight positive correlation between the stellar mass and the gas-phase metallicity of galaxies has been observed at low redshifts. The redshift evolution of this correlation can strongly constrain theories of galaxy evolution. The advent of JWST allows probing the mass–metallicity relation at redshifts far beyond what was previously accessible. Here we report the discovery of two emission line galaxies at redshifts 8.15 and 8.16 in JWST NIRCam imaging and NIRSpec spectroscopy of targets gravitationally lensed by the cluster RX J2129.4+0005. We measure their metallicities and stellar masses along with nine additional galaxies at 7.2 <zspec< 9.5 to report the first quantitative statistical inference of the mass–metallicity relation atz≈ 8. We measure ∼0.9 dex evolution in the normalization of the mass–metallicity relation fromz≈ 8 to the local universe; at a fixed stellar mass, galaxies are 8 times less metal enriched atz≈ 8 compared to the present day. Our inferred normalization is in agreement with the predictions of FIRE simulations. Our inferred slope of the mass–metallicity relation is similar to or slightly shallower than that predicted by FIRE or observed at lower redshifts. We compare thez≈ 8 galaxies to extremely low-metallicity analog candidates in the local universe, finding that they are generally distinct from extreme emission line galaxies or “green peas,” but are similar in strong emission line ratios and metallicities to “blueberry galaxies.” Despite this similarity, at a fixed stellar mass, thez≈ 8 galaxies have systematically lower metallicities compared to blueberry galaxies. 
    more » « less
  10. Abstract The nearby type II supernova, SN 2023ixf in M101 exhibits signatures of early time interaction with circumstellar material in the first week postexplosion. This material may be the consequence of prior mass loss suffered by the progenitor, which possibly manifested in the form of a detectable presupernova outburst. We present an analysis of long-baseline preexplosion photometric data in theg,w,r,i,z, andyfilters from Pan-STARRS as part of the Young Supernova Experiment, spanning ∼5000 days. We find no significant detections in the Pan-STARRS preexplosion light curves. We train a multilayer perceptron neural network to classify presupernova outbursts. We find no evidence of eruptive presupernova activity to a limiting absolute magnitude of −7 mag. The limiting magnitudes from the full set ofgwrizy(average absolute magnitude ≈ −8 mag) data are consistent with previous preexplosion studies. We use deep photometry from the literature to constrain the progenitor of SN 2023ixf, finding that these data are consistent with a dusty red supergiant progenitor with luminosity log L / L ≈ 5.12 and temperature ≈ 3950 K, corresponding to a mass of 14–20M
    more » « less