skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fornasini, Francesca M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT We analyse the completeness of the MOSDEF survey, in which z ∼ 2 galaxies were selected for rest-optical spectroscopy from well-studied HST extragalactic legacy fields down to a fixed rest-optical magnitude limit (HAB = 24.5). The subset of z ∼ 2 MOSDEF galaxies with high signal-to-noise (S/N) emission-line detections analysed in previous work represents a small minority (<10 per cent) of possible z ∼ 2 MOSDEF targets. It is therefore crucial to understand how representative this high S/N subsample is, while also more fully exploiting the MOSDEF spectroscopic sample. Using spectral-energy distribution (SED) models and rest-optical spectral stacking, we compare the MOSDEF z ∼ 2 high S/N subsample with the full MOSDEF sample of z ∼ 2 star-forming galaxies with redshifts, the latter representing an increase in sample size of more than a factor of three. We find that both samples have similar emission-line properties, in particular in terms of the magnitude of the offset from the local star-forming sequence on the [N ii] BPT diagram. There are small differences in median host galaxy properties, including the stellar mass (M*), star formation rate (SFR) and specific SFR (sSFR), and UVJ colours; however, these offsets are minor considering the wide spread of the distributions. Using SED modelling, we also demonstrate that the sample of z ∼ 2 star-forming galaxies observed by the MOSDEF survey is representative of the parent catalog of available such targets. We conclude that previous MOSDEF results on the evolution of star-forming galaxy emission-line properties were unbiased relative to the parent z ∼ 2 galaxy population. 
    more » « less
  2. ABSTRACT We analyse the rest-optical emission-line ratios of z ∼ 1.5 galaxies drawn from the Multi-Object Spectrometer for Infra-Red Exploration Deep Evolution Field (MOSDEF) survey. Using composite spectra, we investigate the mass–metallicity relation (MZR) at z ∼ 1.5 and measure its evolution to z = 0. When using gas-phase metallicities based on the N2 line ratio, we find that the MZR evolution from z ∼ 1.5 to z = 0 depends on stellar mass, evolving by $$\Delta \rm log(\rm O/H) \sim 0.25$$ dex at M*< $$10^{9.75}\, \mathrm{M}_{\odot }$$ down to $$\Delta \rm log(\rm O/H) \sim 0.05$$ at M* ≳ $$10^{10.5}\, \mathrm{M}_{\odot }$$. In contrast, the O3N2-based MZR shows a constant offset of $$\Delta \rm log(\rm O/H) \sim 0.30$$ across all masses, consistent with previous MOSDEF results based on independent metallicity indicators, and suggesting that O3N2 provides a more robust metallicity calibration for our z ∼ 1.5 sample. We investigated the secondary dependence of the MZR on star formation rate (SFR) by measuring correlated scatter about the mean M*-specific SFR and M*−$$\log (\rm O3N2)$$ relations. We find an anticorrelation between $$\log (\rm O/H)$$ and sSFR offsets, indicating the presence of a M*−SFR−Z relation, though with limited significance. Additionally, we find that our z ∼ 1.5 stacks lie along the z = 0 metallicity sequence at fixed μ = log (M*/M⊙) − 0.6 × $$\log (\rm SFR / M_{\odot } \, yr^{-1})$$ suggesting that the z ∼ 1.5 stacks can be described by the z = 0 fundamental metallicity relation (FMR). However, using different calibrations can shift the calculated metallicities off of the local FMR, indicating that appropriate calibrations are essential for understanding metallicity evolution with redshift. Finally, understanding how [N ii]/H α scales with galaxy properties is crucial to accurately describe the effects of blended [N ii] and H α on redshift and H α fiux measurements in future large surveys utilizing low-resolution spectra such as with Euclid and the Roman Space Telescope. 
    more » « less
  3. ABSTRACT The combination of the MOSDEF and KBSS-MOSFIRE surveys represents the largest joint investment of Keck/MOSFIRE time to date, with ∼3000 galaxies at 1.4 ≲ z ≲ 3.8, roughly half of which are at z ∼ 2. MOSDEF is photometric- and spectroscopic-redshift selected with a rest-optical magnitude limit, while KBSS-MOSFIRE is primarily selected based on rest-UV colours and a rest-UV magnitude limit. Analysing both surveys in a uniform manner with consistent spectral-energy-distribution (SED) models, we find that the MOSDEF z ∼ 2 targeted sample has higher median M* and redder rest U−V colour than the KBSS-MOSFIRE z ∼ 2 targeted sample, and smaller median SED-based SFR and sSFR (SFR(SED) and sSFR(SED)). Specifically, MOSDEF targeted a larger population of red galaxies with U−V and V−J ≥1.25, while KBSS-MOSFIRE contains more young galaxies with intense star formation. Despite these differences in the z ∼ 2 targeted samples, the subsets of the surveys with multiple emission lines detected and analysed in previous work are much more similar. All median host-galaxy properties with the exception of stellar population age – i.e. M*, SFR(SED), sSFR(SED), AV, and UVJ colours – agree within the uncertainties. Additionally, when uniform emission-line fitting and stellar Balmer absorption correction techniques are applied, there is no significant offset between both samples in the [O iii]λ5008/H β versus [N ii]λ6585/H α diagnostic diagram, in contrast to previously reported discrepancies. We can now combine the MOSDEF and KBSS-MOSFIRE surveys to form the largest z ∼ 2 sample with moderate-resolution rest-optical spectra and construct the fundamental scaling relations of star-forming galaxies during this important epoch. 
    more » « less
  4. null (Ed.)
    ABSTRACT We study the properties of 55 morphologically-identified merging galaxy systems at z ∼ 2. These systems are flagged as mergers based on features such as tidal tails, double nuclei, and asymmetry. Our sample is drawn from the MOSFIRE Deep Evolution Field (MOSDEF) survey, along with a control sample of isolated galaxies at the same redshift. We consider the relationships between stellar mass, star formation rate (SFR), and gas-phase metallicity for both merging and non-merging systems. In the local universe, merging systems are characterized by an elevated SFR and depressed metallicity compared to isolated systems at a given mass. Our results indicate SFR enhancement and metallicity deficit for merging systems relative to non-merging systems for a fixed stellar mass at z ∼ 2, though larger samples are required to establish these preliminary results with higher statistical significance. In future work, it will be important to establish if the enhanced SFR and depressed metallicity in high-redshift mergers deviate from the ‘fundamental metallicity relation,’ as is observed in mergers in the local universe, and therefore shed light on gas flows during galaxy interactions. 
    more » « less
  5. null (Ed.)
    ABSTRACT We analyse the rest-optical emission-line spectra of z ∼ 2.3 star-forming galaxies in the complete MOSFIRE Deep Evolution Field (MOSDEF) survey. In investigating the origin of the well-known offset between the sequences of high-redshift and local galaxies in the [O iii]λ5008/Hβ versus [N ii]λ6585/Hα (‘[N ii] BPT’) diagram, we define two populations of z ∼ 2.3 MOSDEF galaxies. These include the high population that is offset towards higher [O iii]λ5008/Hβ and/or [N ii]λ6585/Hα with respect to the local SDSS sequence and the low population that overlaps the SDSS sequence. These two groups are also segregated within the [O  iii]λ5008/Hβ versus [S ii]λλ6718,6733/Hα and the [O iii]λλ4960,5008/[O ii ]λλ3727,3730 (O32) versus ([O  iii]λλ4960,5008+[O ii]λλ3727,3730)/Hβ (R23) diagrams, which suggests qualitatively that star-forming regions in the more offset galaxies are characterized by harder ionizing spectra at fixed nebular oxygen abundance. We also investigate many galaxy properties of the split sample and find that the high sample is on average smaller in size and less massive, but has higher specific star formation rate (SFR) and SFR surface density values and is slightly younger compared to the low population. From Cloudy+BPASS photoionization models, we estimate that the high population has a lower stellar metallicity (i.e. harder ionizing spectrum) but slightly higher nebular metallicity and higher ionization parameter compared to the low population. While the high population is more α-enhanced (i.e. higher α/Fe) than the low population, both samples are significantly more α-enhanced compared to local star-forming galaxies with similar rest-optical line ratios. These differences must be accounted for in all high-redshift star-forming galaxies – not only those ‘offset’ from local excitation sequences. 
    more » « less
  6. null (Ed.)