- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Foster, John R (3)
-
Brentrup, Jennifer A (1)
-
Carey, Cayelan C (1)
-
Degaetano, Arthur T (1)
-
Dietze, Michael C (1)
-
Elmendorf, Sarah C (1)
-
Farrell, Kaitlin J (1)
-
Ginsberg, Howard S (1)
-
Grayson, Kristine L (1)
-
Grear, Daniel (1)
-
Hagadorn, James W (1)
-
Hooten, Mevin B (1)
-
LaDeau, Shannon (1)
-
Matthes, Jaclyn H (1)
-
McClure, Katherine M (1)
-
McDevitt‐Galles, Travis (1)
-
Paull, Sara (1)
-
Posthumus, Erin (1)
-
Rochlin, Ilia (1)
-
SanClements, Michael D (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Climate‐induced shifts in mosquito phenology and population structure have important implications for the health of humans and wildlife. The timing and intensity of mosquito interactions with infected and susceptible hosts are a primary determinant of vector‐borne disease dynamics. Like most ectotherms, rates of mosquito development and corresponding phenological patterns are expected to change under shifting climates. However, developing accurate forecasts of mosquito phenology under climate change that can be used to inform management programs remains challenging despite an abundance of available data. As climate change will have variable effects on mosquito demography and phenology across species it is vital that we identify associated traits that may explain the observed variation. Here, we review a suite of modeling approaches that could be applied to generate forecasts of mosquito activity under climate change and evaluate the strengths and weaknesses of the different approaches. We describe four primary life history and physiological traits that can be used to constrain models and demonstrate how this prior information can be harnessed to develop a more general understanding of how mosquito activity will shift under changing climates. Combining a trait‐based approach with appropriate modeling techniques can allow for the development of actionable, flexible, and multi‐scale forecasts of mosquito population dynamics and phenology for diverse stakeholders.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Foster, John R; Sundberg, Frederick A; Hagadorn, James W (, Journal of Paleontology)Abstract Fossils are rare in Cambrian strata of the Uinta Mountains of northeastern Utah, and are important because they can help integrate our understanding of laterally adjacent but discontiguous rock units, e. g., the Tintic Quartzite of Utah and the Lodore Formation of Utah-Colorado. New body fossils from strata previously mapped as Tintic or Cambrian Undifferentiated, but here interpreted as the Ophir Formation, include indeterminate hyoliths and hyolithids, brachiopods including a linguloid, and the trilobitesTrachycheilusResser, 1945 andElrathiellaPoulsen, 1927. The last two assign these strata to theEhmaniellaBiozone (uppermost Wuliuan Stage; Miaolingian Series) or traditional Laurentian middle Cambrian. These data, together with fossil occurrences elsewhere in Utah, require that the Tintic Quartzite was deposited prior to and/or during the early Wuliuan, and suggest that the unit could be correlative to much of the Lodore Formation of Utah and Colorado.more » « less
-
Farrell, Kaitlin J; Weathers, Kathleen C; Sparks, Sarah H; Brentrup, Jennifer A; Carey, Cayelan C; Dietze, Michael C; Foster, John R; Grayson, Kristine L; Matthes, Jaclyn H; SanClements, Michael D (, Frontiers in Ecology and the Environment)null (Ed.)