skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cambrian trilobites and associated fossils from the Uinta Mountains of Utah (USA)
Abstract Fossils are rare in Cambrian strata of the Uinta Mountains of northeastern Utah, and are important because they can help integrate our understanding of laterally adjacent but discontiguous rock units, e. g., the Tintic Quartzite of Utah and the Lodore Formation of Utah-Colorado. New body fossils from strata previously mapped as Tintic or Cambrian Undifferentiated, but here interpreted as the Ophir Formation, include indeterminate hyoliths and hyolithids, brachiopods including a linguloid, and the trilobitesTrachycheilusResser, 1945 andElrathiellaPoulsen, 1927. The last two assign these strata to theEhmaniellaBiozone (uppermost Wuliuan Stage; Miaolingian Series) or traditional Laurentian middle Cambrian. These data, together with fossil occurrences elsewhere in Utah, require that the Tintic Quartzite was deposited prior to and/or during the early Wuliuan, and suggest that the unit could be correlative to much of the Lodore Formation of Utah and Colorado.  more » « less
Award ID(s):
1954634
PAR ID:
10528046
Author(s) / Creator(s):
; ;
Publisher / Repository:
Journal of Paleontology; Published by Cambridge University Press on behalf of The Paleontological Society
Date Published:
Journal Name:
Journal of Paleontology
ISSN:
0022-3360
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Middle to Upper Jurassic strata in the Paradox Basin and Central Colorado trough (CCT; southwestern United States) record a pronounced change in sediment dispersal from dominantly aeolian deposition with an Appalachian source (Entrada Sandstone) to dominantly fluvial deposition with a source in the Mogollon and/or Sevier orogenic highlands (Salt Wash Member of the Morrison Formation). An enigmatic abundance of Cambrian (ca. 527–519 Ma) grains at this provenance transition in the CCT at Escalante Canyon, Colorado, was recently suggested to reflect a local sediment source from the Ancestral Front Range, despite previous interpretations that local basement uplifts were largely buried by Middle to Late Jurassic time. This study aims to delineate spatial and temporal patterns in provenance of these Jurassic sandstones containing Cambrian grains within the Paradox Basin and CCT using sandstone petrography, detrital zircon U-Pb geochronology, and detrital zircon trace elemental and rare-earth elemental (REE) geochemistry. We report 7887 new U-Pb detrital zircon analyses from 31 sandstone samples collected within seven transects in western Colorado and eastern Utah. Three clusters of zircon ages are consistently present (1.53–1.3 Ga, 1.3–0.9 Ga, and 500–300 Ma) that are interpreted to reflect sources associated with the Appalachian orogen in southeastern Laurentia (mid-continent, Grenville, Appalachian, and peri-Gondwanan terranes). Ca. 540–500 Ma zircon grains are anomalously abundant locally in the uppermost Entrada Sandstone and Wanakah Formation but are either lacking or present in small fractions in the overlying Salt Wash and Tidwell Members of the Morrison Formation. A comparison of zircon REE geochemistry between Cambrian detrital zircon and igneous zircon from potential sources shows that these 540–500 Ma detrital zircon are primarily magmatic. Although variability in both detrital and igneous REE concentrations precludes definitive identification of provenance, several considerations suggest that distal sources from the Cambrian granitic and rhyolitic provinces of the Southern Oklahoma aulacogen is also likely, in addition to a proximal source identified in the McClure Mountain syenite of the Wet Mountains, Colorado. The abundance of Cambrian grains in samples from the central CCT, particularly in the Entrada Sandstone and Wanakah Formation, suggests northwesterly sediment transport within the CCT, with sediment sourced from Ancestral Rocky Mountains uplifts of the southern Wet Mountains and/or Amarillo-Wichita Mountains in southwestern Oklahoma. The lack of Cambrian grains within the Paradox Basin suggests that the Uncompahgre uplift (southwestern Colorado) acted as a barrier to sediment transport from the CCT. 
    more » « less
  2. Abstract We describe > 200 ribbon-like macroscopic fossils from terminal Ediacaran strata at Mount Dunfee, Nevada, USA ∼ 115 m below the local placement of the Ediacaran–Cambrian boundary. They are preserved as casts and molds, composed of Fe-oxides and Fe-rich aluminosilicates in an aluminosilicate clay matrix. Measurements of 50 of the specimens provide a fossil size range of 0.22–0.74 mm-wide and 0.1–75.0 mm-long. Some specimens evidence original flexibility and appear to be fragmented, consistent with soft body preservation. They are therefore interpreted as body fossils, rather than trace fossils. Given this interpretation, we suggest that the fossils’ size range and ribbon-like morphologies are consistent with them being members of the problematicum Vendotaenia, which have not been previously reported from Ediacaran strata within the southern Great Basin. The phylogenetic affinity of vendotaenids is unresolved, but they are commonly interpreted as a form of eukaryotic macroalgae. This report firmly establishes vendotaenids in Ediacaran strata on Laurentia, broadening their known paleogeographic range during the end-Ediacaran Period. Additionally, the morphology of the fossils described here supports the notion that, although vendotaenids are reported from many Ediacaran paleocontinents globally, there was low macroalgal diversity at the end of the Ediacaran Period. 
    more » « less
  3. Abstract The extraordinary window of phosphatized and phosphatic small shelly fossils (SSF) during the early and middle Cambrian is an important testament to the radiation of biomineralizing metazoans. WhileSSFare well known from most Cambrian palaeocontinents during this time interval, western Laurentia has relatively fewSSFfaunas. Here we describe a diverseSSFfauna from the early Cambrian (Stages 3–4) Mural Formation at three localities in Alberta and British Columbia, Canada, complemented by carbon isotope measurements to aid in a potential future bio‐chemostratigraphic framework. The fauna expands the recordedSSFassemblage diversity in western Laurentia and includes several brachiopods, four bradoriids, three chancelloriids, two hyoliths, a tommotiid and a helcionellid mollusc as well as echinoderm ossicles and specimens ofMicrodictyon,VolborthellaandHyolithellus. New taxa include the tommotiid genusCanadiellagen. nov., the new bradoriid speciesHipponicharion perforatasp. nov. andPseudobeyrichona tauratasp. nov. Compared with contemporaneous faunas from western Laurentia, the fauna is relatively diverse, particularly in taxa with originally phosphatic shells, which appear to be associated with archaeocyathid build‐ups. This suggests that the generally low faunal diversity in western Laurentia may be at least partly a consequence of poor sampling of suitable archaeocyathan reef environments. In addition, the tommotiidCanadiella filigranaappears to be of biostratigraphical significance in Cambrian Stage 3 strata of western Laurentia, and the unexpected high diversity of bradoriid arthropods in the fauna also suggests that this group may prove useful for biostratigraphical resolution in the region. 
    more » « less
  4. The geologically rapid appearance of fossils of modern animal phyla within Cambrian strata is a defining characteristic of the history of life on Earth. However, temporal calibration of the base of the Cambrian Period remains uncertain within millions of years, which has resulted in mounting challenges to the concept of a discrete Cambrian explosion. We present precise zircon U–Pb dates for the lower Wood Canyon Formation, Nevada. These data demonstrate the base of the Cambrian Period, as defined by both ichnofossil biostratigraphy and carbon isotope chemostratigraphy, was younger than 533 Mya, at least 6 My later than currently recognized. This new geochronology condenses previous age models for the Nemakit–Daldynian (early Cambrian) and, integrated with global records, demonstrates an explosive tempo to the early radiation of modern animal phyla. 
    more » « less
  5. Abstract The upper Ediacaran stratigraphic record hosts fossil assemblages of Earth’s earliest communities of complex, macroscopic, multicellular life. Tubular fossils are a common and diverse, though frequently undercharacterized, component of many of these assemblages. Gaojiashania cyclus is an enigmatic tubular fossil and candidate index fossil found in upper Ediacaran strata globally and is best known from the Gaojiashan Lagerstätte of South China. Here we describe a recently discovered assemblage of Gaojiashania fossils from the Ediacaran Dunfee Member of the Deep Spring Formation of Nevada, USA. Both body and trace fossil affinities have been proposed for Gaojiashania; we present morphological and biostratinomic evidence for a body fossil affinity for the Dunfee specimens. Additionally, previous studies have highlighted that Ediacaran tubular fossils are characterized by a wide range of preservational modes, including association with pyrite, apatite, or clay minerals and preservation as carbonaceous compressions. Petrographic, SEM, and EDS data indicate that the Dunfee Gaojiashania specimens are preserved as ‘Ediacara-style’ external, internal and composite molds, in siltstone and sandstone with a clay mineral-rich matrix of both aluminosilicates and non-aluminous Mg- and Fe-rich silicate minerals that we interpret as authigenic clays. Authigenic clay-mediated fossilization of unmineralized tissues, including moldic preservation in heterolithic siliciclastic strata, as indicated by the Dunfee Gaojiashania, may be linked to the prevalence of both silica-rich and ferruginous seawater conditions prior to both the radiation of silica-biomineralizing organisms and the rise of ocean and atmospheric oxygen to modern levels. In this light, clay authigenesis may have played a critical role in facilitating multiple modes of Ediacaran and Cambrian exceptional fossilization, thus shaping the stratigraphic distribution of a range of Ediacara macrofossil taxa. 
    more » « less