skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fox, Geoffrey_C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Particle collisions at accelerators like the Large Hadron Collider (LHC), recorded by experiments such as ATLAS and CMS, enable precise standard model measurements and searches for new phenomena. Simulating these collisions significantly influences experiment design and analysis but incurs immense computational costs, projected at millions of CPU-years annually during the high luminosity LHC (HL-LHC) phase. Currently, simulating a single event with Geant4 consumes around 1000 CPU seconds, with calorimeter simulations especially demanding. To address this, we propose a conditioned quantum-assisted generative model, integrating a conditioned variational autoencoder (VAE) and a conditioned restricted Boltzmann machine (RBM). Our RBM architecture is tailored for D-Wave’s Pegasus-structured advantage quantum annealer for sampling, leveraging the flux bias for conditioning. This approach combines classical RBMs as universal approximators for discrete distributions with quantum annealing’s speed and scalability. We also introduce an adaptive method for efficiently estimating effective inverse temperature, and validate our framework on Dataset 2 of CaloChallenge. 
    more » « less
  2. Simulating the dynamics of ions near polarizable nanoparticles (NPs) using coarse-grained models is extremely challenging due to the need to solve the Poisson equation at every simulation timestep. Recently, a molecular dynamics (MD) method based on a dynamical optimization framework bypassed this obstacle by representing the polarization charge density as virtual dynamic variables and evolving them in parallel with the physical dynamics of ions. We highlight the computational gains accessible with the integration of machine learning (ML) methods for parameter prediction in MD simulations by demonstrating how they were realized in MD simulations of ions near polarizable NPs. An artificial neural network–based regression model was integrated with MD simulation and predicted the optimal simulation timestep and optimization parameters characterizing the virtual system with 94.3% success. The ML-enabled auto-tuning of parameters generated accurate dynamics of ions for ≈ 10 million steps while improving the stability of the simulation by over an order of magnitude. The integration of ML-enhanced framework with hybrid Open Multi-Processing / Message Passing Interface (OpenMP/MPI) parallelization techniques reduced the computational time of simulating systems with thousands of ions and induced charges from thousands of hours to tens of hours, yielding a maximum speedup of ≈ 3 from ML-only acceleration and a maximum speedup of ≈ 600 from the combination of ML and parallel computing methods. Extraction of ionic structure in concentrated electrolytes near oil–water emulsions demonstrates the success of the method. The approach can be generalized to select optimal parameters in other MD applications and energy minimization problems. 
    more » « less