- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Foygel Barber, Rina (3)
-
Candès, Emmanuel J (1)
-
Lee, Yonghoon (1)
-
Liu, Haoyang (1)
-
Ramdas, Aaditya (1)
-
Tibshirani, Ryan J (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Foygel Barber, Rina; Candès, Emmanuel J; Ramdas, Aaditya; Tibshirani, Ryan J (, Information and Inference: A Journal of the IMA)null (Ed.)Abstract We consider the problem of distribution-free predictive inference, with the goal of producing predictive coverage guarantees that hold conditionally rather than marginally. Existing methods such as conformal prediction offer marginal coverage guarantees, where predictive coverage holds on average over all possible test points, but this is not sufficient for many practical applications where we would like to know that our predictions are valid for a given individual, not merely on average over a population. On the other hand, exact conditional inference guarantees are known to be impossible without imposing assumptions on the underlying distribution. In this work, we aim to explore the space in between these two and examine what types of relaxations of the conditional coverage property would alleviate some of the practical concerns with marginal coverage guarantees while still being possible to achieve in a distribution-free setting.more » « less
-
Liu, Haoyang; Foygel Barber, Rina (, Information and Inference: A Journal of the IMA)Abstract Iterative thresholding algorithms seek to optimize a differentiable objective function over a sparsity or rank constraint by alternating between gradient steps that reduce the objective and thresholding steps that enforce the constraint. This work examines the choice of the thresholding operator and asks whether it is possible to achieve stronger guarantees than what is possible with hard thresholding. We develop the notion of relative concavity of a thresholding operator, a quantity that characterizes the worst-case convergence performance of any thresholding operator on the target optimization problem. Surprisingly, we find that commonly used thresholding operators, such as hard thresholding and soft thresholding, are suboptimal in terms of worst-case convergence guarantees. Instead, a general class of thresholding operators, lying between hard thresholding and soft thresholding, is shown to be optimal with the strongest possible convergence guarantee among all thresholding operators. Examples of this general class includes $$\ell _q$$ thresholding with appropriate choices of $$q$$ and a newly defined reciprocal thresholding operator. We also investigate the implications of the improved optimization guarantee in the statistical setting of sparse linear regression and show that this new class of thresholding operators attain the optimal rate for computationally efficient estimators, matching the Lasso.more » « less
An official website of the United States government
