skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fram, Jonathan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This data set consists of 3,244 gridded, daily averaged temperature, practical salinity, potential density, and dissolved oxygen profiles. These profiles were collected from October 2014 to May 2025 by the NSF Ocean Observatories Initiative Washington Offshore Profiler Mooring (CE09OSPM) located at 46.8517°N, 124.982°W between approximately 35 and 510 meters water depth using a McLane® Moored Profiler (MMP). The MMP was equipped with a Sea-Bird Scientific 52-MP (SBE 52-MP) CTD instrument and an associated Sea-Bird Scientific (SBE 43F) dissolved oxygen sensor. Raw binary data files [C*.DAT (CTD data); E*.DAT (engineering data plus auxiliary sensor data) and A*.DAT (current meter data)] were converted to ASCII text files using the McLane® Research Laboratories, Inc. Profile Unpacker v3.10 application. Dissolved oxygen calibration files for each of the twenty deployments were downloaded from the Ocean Observatories Initiative asset-management GitHub® repository.  The unpacked C*.TXT (CTD data); E*.TXT (engineering data plus auxiliary sensors) and A*.TXT (current meter data) ASCII data files associated with each deployment were processed using a MATLAB® toolbox that was specifically created to process OOI MMP data. The toolbox imports MMP A*.TXT, C*.TXT, and E*.TXT data files, and applies the necessary calibration coefficients and data corrections, including adjusting for thermal-lag, flow, and sensor time constant effects. mmp_toolbox calculates dissolved oxygen concentration using the methods described in Owens and Millard (1985) and Garcia and Gordon (1992). Practical salinity and potential density are derived using the Gibbs-SeaWater Oceanographic Toolbox. After the corrections and calculations for each profile are complete, the data are binned in space to create a final, 0.5-dbar binned data set. The more than 24,000 individual temperature, practical salinity, pressure, potential density, and dissolved oxygen profiles were temporally averaged to form the final, daily averaged data set presented here. Using the methods described in Risien et al. (2023), daily temperature, practical salinity, potential density, and dissolved oxygen climatologies were calculated for each 0.5-dbar depth bin using a three-harmonic fit (1, 2, and 3 cycles per year) based on the 10-year period January 2015 to December 2024. 
    more » « less
  2. The field of oceanography is transitioning from data-poor to data-rich, thanks in part to increased deployment ofin-situplatforms and sensors, such as those that instrument the US-funded Ocean Observatories Initiative (OOI). However, generating science-ready data products from these sensors, particularly those making biogeochemical measurements, often requires extensive end-user calibration and validation procedures, which can present a significant barrier. Openly available community-developed and -vetted Best Practices contribute to overcoming such barriers, but collaboratively developing user-friendly Best Practices can be challenging. Here we describe the process undertaken by the NSF-funded OOI Biogeochemical Sensor Data Working Group to develop Best Practices for creating science-ready biogeochemical data products from OOI data, culminating in the publication of the GOOS-endorsed OOI Biogeochemical Sensor Data Best Practices and User Guide. For Best Practices related to ocean observatories, engaging observatory staff is crucial, but having a “user-defined” process ensures the final product addresses user needs. Our process prioritized bringing together a diverse team and creating an inclusive environment where all participants could effectively contribute. Incorporating the perspectives of a wide range of experts and prospective end users through an iterative review process that included “Beta Testers’’ enabled us to produce a final product that combines technical information with a user-friendly structure that illustrates data analysis pipelines via flowcharts and worked examples accompanied by pseudo-code. Our process and its impact on improving the accessibility and utility of the end product provides a roadmap for other groups undertaking similar community-driven activities to develop and disseminate new Ocean Best Practices. 
    more » « less