Depth profiles of water biogeochemical properties were collected with SeaBird Electronics (SBE) Conductivity, Temperature, and Depth (CTD) profilers from 2013-2023. Data availability differs across years due to additional sensors that have been added or replaced over time. From 2013-2016, profiles were taken with a CTD equipped with an SBE 43 Dissolved Oxygen sensor and an ECO FLNTU sensor for turbidity and chlorophyll. From 2017-2023, profiles were taken with a CTD equipped with an SBE 43 Dissolved Oxygen sensor, an ECO FLNTU sensor for turbidity and chlorophyll, a PAR-LOG ICSW sensor for photosynthetically active radiation, and a SBE 27 pH and ORP (oxidation-reduction potential) sensor. In 2022 and 2023, profiles were also taken with an additional CTD equipped with an SBE 43 Dissolved Oxygen sensor; an ECO Triplet Scattering Fluorescence sensor for CDOM, phycocyanin, and phycoerythrin; an ECO FLNTU sensor for turbidity and chlorophyll; and PAR-LOG ICSW for photosynthetically active radiation. CTD profiles were collected in five drinking water reservoirs in southwestern Virginia, USA. All variables were measured every 0.25 seconds, resulting in depth profiles at approximately ten centimeter resolution. The five study reservoirs are: Beaverdam Reservoir (Vinton, Virginia), Carvins Cove Reservoir (Roanoke, Virginia), Falling Creek Reservoir (Vinton, Virginia), Gatewood Reservoir (Pulaski, Virginia), and Spring Hollow Reservoir (Salem, Virginia). Beaverdam, Carvins Cove, Falling Creek, and Spring Hollow Reservoirs are owned and operated by the Western Virginia Water Authority as primary or secondary drinking water sources for Roanoke, Virginia, and Gatewood Reservoir is a drinking water source for the town of Pulaski, Virginia. The dataset consists of CTD depth profiles measured at the deepest site of each reservoir adjacent to the dam as well as other upstream reservoir sites. The profiles were collected approximately fortnightly in the spring months, weekly in the summer and early autumn, and monthly in the late autumn and winter. Beaverdam Reservoir, Carvins Cove Reservoir, and Falling Creek Reservoir were sampled every year in the dataset (2013-2023); Spring Hollow Reservoir was only sampled 2013-2017 and 2019; and Gatewood Reservoir was only sampled in 2016.
more »
« less
Gridded Ocean Observatories Initiative Washington Offshore Profiler Mooring (CE09OSPM) Conductivity–Temperature–Depth (CTD) and dissolved oxygen data, 2014 – 2025
This data set consists of 3,244 gridded, daily averaged temperature, practical salinity, potential density, and dissolved oxygen profiles. These profiles were collected from October 2014 to May 2025 by the NSF Ocean Observatories Initiative Washington Offshore Profiler Mooring (CE09OSPM) located at 46.8517°N, 124.982°W between approximately 35 and 510 meters water depth using a McLane® Moored Profiler (MMP). The MMP was equipped with a Sea-Bird Scientific 52-MP (SBE 52-MP) CTD instrument and an associated Sea-Bird Scientific (SBE 43F) dissolved oxygen sensor. Raw binary data files [C*.DAT (CTD data); E*.DAT (engineering data plus auxiliary sensor data) and A*.DAT (current meter data)] were converted to ASCII text files using the McLane® Research Laboratories, Inc. Profile Unpacker v3.10 application. Dissolved oxygen calibration files for each of the twenty deployments were downloaded from the Ocean Observatories Initiative asset-management GitHub® repository. The unpacked C*.TXT (CTD data); E*.TXT (engineering data plus auxiliary sensors) and A*.TXT (current meter data) ASCII data files associated with each deployment were processed using a MATLAB® toolbox that was specifically created to process OOI MMP data. The toolbox imports MMP A*.TXT, C*.TXT, and E*.TXT data files, and applies the necessary calibration coefficients and data corrections, including adjusting for thermal-lag, flow, and sensor time constant effects. mmp_toolbox calculates dissolved oxygen concentration using the methods described in Owens and Millard (1985) and Garcia and Gordon (1992). Practical salinity and potential density are derived using the Gibbs-SeaWater Oceanographic Toolbox. After the corrections and calculations for each profile are complete, the data are binned in space to create a final, 0.5-dbar binned data set. The more than 24,000 individual temperature, practical salinity, pressure, potential density, and dissolved oxygen profiles were temporally averaged to form the final, daily averaged data set presented here. Using the methods described in Risien et al. (2023), daily temperature, practical salinity, potential density, and dissolved oxygen climatologies were calculated for each 0.5-dbar depth bin using a three-harmonic fit (1, 2, and 3 cycles per year) based on the 10-year period January 2015 to December 2024.
more »
« less
- Award ID(s):
- 2244833
- PAR ID:
- 10627734
- Publisher / Repository:
- Zenodo
- Date Published:
- Subject(s) / Keyword(s):
- seawater temperature practical salinity density dissolved oxygen CTD CE09OSPM NSF OOI Endurance Array McLane Moored Profiler
- Format(s):
- Medium: X
- Right(s):
- Creative Commons Attribution 4.0 International
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Depth profiles of water biogeochemical properties were collected with SeaBird Electronics (SBE) Conductivity, Temperature, and Depth (CTD) profilers from 2013-2024 at five drinking water reservoirs in southwestern Virginia, USA. The study reservoirs are: Beaverdam Reservoir (Vinton, Virginia), Carvins Cove Reservoir (Roanoke, Virginia), Falling Creek Reservoir (Vinton, Virginia), Gatewood Reservoir (Pulaski, Virginia), and Spring Hollow Reservoir (Salem, Virginia). Beaverdam, Carvins Cove, Falling Creek, and Spring Hollow Reservoirs are owned and operated by the Western Virginia Water Authority as primary or secondary drinking water sources for Roanoke, Virginia, and Gatewood Reservoir is a drinking water source for the town of Pulaski, Virginia. The dataset consists of CTD depth profiles measured at the deepest site of each reservoir adjacent to the dam as well as other upstream reservoir sites. The profiles were collected approximately fortnightly in the spring months, weekly in the summer and early autumn, and monthly in the late autumn and winter. Beaverdam Reservoir, Carvins Cove Reservoir, and Falling Creek Reservoir were sampled every year in the dataset (2013-2024); Spring Hollow Reservoir was only sampled 2013-2017 and 2019; and Gatewood Reservoir was only sampled in 2016. Data availability differs across years due to additional sensors that have been added or replaced over time. From 2013-2016, profiles were taken with a CTD equipped with an SBE 43 Dissolved Oxygen sensor and an ECO FLNTU sensor for turbidity and chlorophyll. From 2017-2024, profiles were taken with a CTD equipped with an SBE 43 Dissolved Oxygen sensor, an ECO FLNTU sensor for turbidity and chlorophyll, a PAR-LOG ICSW sensor for photosynthetically active radiation, and a SBE 27 pH and ORP (oxidation-reduction potential) sensor. In 2022 and 2023, profiles were also taken with an additional CTD equipped with an SBE 43 Dissolved Oxygen sensor; an ECO Triplet Scattering Fluorescence sensor for CDOM, phycocyanin, and phycoerythrin; an ECO FLNTU sensor for turbidity and chlorophyll; and PAR-LOG ICSW for photosynthetically active radiation. All variables were measured every 0.25 seconds, resulting in depth profiles at approximately ten centimeter resolution. Maximum cast depth is not necessarily equal to site depth; see methods for more information.more » « less
-
Depth profiles of temperature, dissolved oxygen, conductivity, specific conductance, chlorophyll a, and turbidity were collected with a CTD (Conductivity, Temperature, and Depth) profiler fitted with a SBE 43 Dissolved Oxygen sensor and an ECO Triplet Fluorometer and Backscattering Sensor from 2013 to 2022. From 2017-2022, pH and oxidation-reduction potential (ORP) were also collected with a SBE 27 pH and O.R.P. (redox) sensor. CTD profiles were collected in five drinking water reservoirs in southwestern Virginia, USA. All variables were measured every 0.25 seconds, resulting in depth profiles at approximately ten centimeter resolution. The five study reservoirs are: Beaverdam Reservoir (Vinton, Virginia), Carvins Cove Reservoir (Roanoke, Virginia), Falling Creek Reservoir (Vinton, Virginia), Gatewood Reservoir (Pulaski, Virginia), and Spring Hollow Reservoir (Salem, Virginia). Beaverdam, Carvins Cove, Falling Creek, and Spring Hollow Reservoirs are owned and operated by the Western Virginia Water Authority as primary or secondary drinking water sources for Roanoke, Virginia, and Gatewood Reservoir is a drinking water source for the town of Pulaski, Virginia. The dataset consists of CTD depth profiles measured at the deepest site of each reservoir adjacent to the dam as well as well as other upstream reservoir sites. The profiles were collected approximately fortnightly in the spring months, weekly in the summer and early autumn, and monthly in the late autumn and winter. Beaverdam Reservoir, Carvins Cove Reservoir, and Falling Creek Reservoir were sampled every year in the dataset (2013-2022); Spring Hollow Reservoir was not in sampled in 2018 or 2020–2022; and Gatewood Reservoir was only sampled in 2016.more » « less
-
This dataset contains bottle-calibrated dissolved oxygen (DO) profiles collected from Conductivity Temperature Depth (CTD) casts on turn-around cruises performed yearly to maintain the Ocean Observations Initiative (OOI) Global Irminger Sea Array (60.46°N, 38.44°W). DO profiles were used in conjunction with oxygen bottle measurements (Winklers) to produce a post-cruise oxygen-calibrated CTD product for scientific use. Bottle-calibrated CTD salinity products were used to produce post-cruise oxygen-calibrated CTD profiles starting in 2018 (Year 5). This document contains overviews of CTD data collection and processing and post-processing oxygen sensor calibration method. Reports for each cruise include a summary of relevant cruise events, oxygen sensor calibration results, and issues/problems associated with oxygen data collected on each cruise. This dataset has been created for end-users that require field-calibrated oxygen data products that are currently not provided by OOI through its standard data dissemination.more » « less
-
Using standard calibration schemes commercial oxygen optode sensors typically yield oxygen concentrations in the range of 2-4 umol/kg under anoxic conditions. They are thus unable to detect the roughly 0.1 umol/kg levels of oceanic functional anoxia. Here, a modified Stern-Volmer equation is used to characterize and calibrate 26 optodes deployed on 16 autonomous floats in the Eastern Tropical Pacific (ETNP) oxygen deficient zone (ODZ) using a combination of manufacturers', laboratory, and in-situ data. Laboratory calibrations lasting several months and conducted over 2 years show that optodes kept under anoxic conditions drift at rates of order 0.2 umol/kg/yr, with much higher drifts in the first month. The initial transient is plausibly due to the degassing of plastic components of the optodes and might be reduced by replacing these with metal. Oxygen concentrations measured by these calibrated optodes in the nearly anoxic ODZ core of the ETNP deviated from both the laboratory calibrations and ship-based STOX measurements by similar amounts. Thus with current sensors, an in-situ anoxic oxygen calibration only once or twice a year is needed to maintain an accuracy close to 0.2 umol/kg. An algorithm to find the anoxic cores of the ETNP ODZ is developed and used to remove the drift in the float optodes to this accuracy. This is an order-of-magnitude improvement in the low oxygen performance of the optodes and could be implemented on the existing database of Argo oxygen floats to map the geography of functional anoxia. This dataset contains the raw float data, the float data calibrated using the manufacturers’ schemes and our new scheme. The calibration points and our final calibration constants, as well as the STOX data used to validate our new calibrations, are included. Data was collected on 10 custom-built profiling 'ODZ' floats equipped with oxygen optodes and gas tension devices and on 6 standard Argo floats with oxygen sensors. Argo data was processed by Argo and recalibrated at APL/UW. ODZ float data was processed at APL/UW as described in the associated manuscript. # Oxygen data from Eastern Tropical North Pacific cruises and floats 2021-2022 [https://doi.org/10.5061/dryad.8kprr4xwk](https://doi.org/10.5061/dryad.8kprr4xwk) ## Description of the data and file structure ## **ODZ Level2.zip** contains scientific data for the ODZ floats converted from raw data using nominal calibrations. Level_2 in NASAspeak. A README, Diagnostic plots, and a Matlab conversion program are included. The script ***MRVFloatDecode_2023.m*** reads the raw files for the ODZ floats and puts them in a single Matlab file **xo110-.mat** where the first is the float number and the second is the boot number. It makes lots of plots, which I also include. Matlab substructures and variables are: ***CTD*** – Structure containing Seabird 41CT data * P, T, S – pressure [dbar], temperature [deg C], practica salinity as computed by Seabird [psu] * time, mtime – time in Matlab datetime and datenum formats * SA, CT, Sig0 – Absolute salinity [g/kg], conservative temperature [deg C], potential density [kg/m^3] * CC, W, Drag–estimated oil volume [cc], vertical velocity [m/s], Drag force (for ballasting) [N] ***GPS*** – position * time, mtime - time as Matlab datetime, Matlab datnum * lat,lon- location degrees latitude, degrees longitude * nsat, hdop – number of satellites, horizontal dilution of precision ***GTD*** – Gas Tension Sensor * time, mtime - time as Matlab datetime, Matlab datnum, * P, T, S, Sig0 – Pressure [dbar], temperature [deg C], practical salinity [psu], potential density [kg/m^3] * GT – gas tension [mbar] * Tgtd – temperature of GTD [ deg C] * Ref- time [matlab datenum], temperature [deg C], pressure [mbar] for reference sensor * Other variables are calibration constants and check values. ***SBE5M1,SBE5M2*** - status of pumps. 1 is for optode(1) and GTD. 2 is for reference optod ***oldGTD*** - One float had an old-style GTD for reference. ***optode*** - SBE63 optodes (1) is water optode, (2) is reference optode * time, time -time as Matlab datum and date time * SN – optode serial number * red_amp, blue_amp- amplitudes of red and blue LEDs [counts] * red-phase, blue-phase- phases [microvolts] of fluorescence phase. * O2phase- their difference [microvolts] used to compute oxygen * T – optode temperature [deg C] * O2uM – optode’s computed oxygen concentration converted to uMol/kg. * Tctd, S, P, Sig0 – CTD interpolated to optode time - temperature [deg C], practical salinity [psu], pressure [dbar], potential density [kg/m^3] ***ADC, AirPump, AirValve, OilPump,*** ***OilValve*** - structures diagnosing the buoyancy system operations. Scientfically uninteresting. ## ***STOX Oxygen Profiles.zip*** Contains high precision oxygen profiles taken on the two Sally Ride cruises using STOX oxygen sensors. The data is provided as .txt and .mat formats along with miscellaneous data from the CTD. Oxygen measurements from the floats were referenced to STOX oxygen profiles taken from the ship on the two cruises because these provide much more stable and high precision measurements. STOX sensors are described in detail in Revsbech, N. P.; Larsen, L. H.; Gundersen, J.; Dalsgaard, T.; Ulloa, O. and Thamdrup, B. ( 2009) Determination of ultra‐low oxygen concentrations in oxygen minimum zones by the STOX sensor. Limnology and Oceanography: Methods, 7, pp.371-381. DOI:10.4319/lom.2009.7.371. And from their manufacturer [https://unisense.com/products/stox-microsensor/](https://unisense.com/products/stox-microsensor/) STOX data was collected on two cruises of the research vessel, Sally Ride, SR 2114 and SR2011. Data from each CTD cast with a STOX profile is in a separate folder in this archive. In each, the raw data is in a ****.txt*** file and the converted Matlab data is in a ****.mat*** file. MATLAB scripts to read the ****.mat*** file are included in each folder. Data names and units are: Ship Cruise Station Cast Year Month Day Hour Minute * Depth [m] * Latitude [deg] * Longitude [deg] * Density [sigma-theta,kg/m^3] * Temperature [ºC] * Salinity * Beam Attenuation [1/m] * Fluorescence [mg Chla/m3] * PAR [umol/m2/s] * Oxygen_SBE [µmol/kg]) * Oxygen_STOX [µmol/kg] * STOX_SD [µmol/kg] * STOX_n [µmol/kg] * NO3-Suna [uM] ## **Optode Calibration.zip** Contains all of the calibration data used to calibrate the optodes including the anoxic laboratory points, the manufacturers' calibration points, and the coefficients of the calibration model for each optode. **Seabird 63 Optodes** Anoxic calibration data and model fit are in ***AnoxicCalibration/SBE63/2020/*** and ***/2021/***. The 2020 data was used in the final calibration. * Files are *******Tau0model.mat*** where **** is the optode serial number * Variable ***meta*** explains each variable, repeated here. Calibration model is '1./Taup.*exp(-(Etau+Etau2.*(K-283.15).^2)/R/K )*(1+Drift *(days since start) )' Variables are * Taup: 'Phase [uS]' * Etau: 'Energy is Etau+Etau2*(T-10C) [J/mol] * Drift: 'Drift coefficient in the model [1/days] * Ttau: 'Time scale of drift [days] * Drift_uSday: 'Model Drift uS/day' * Dcal: 'Robust Drift. The drift line is Dcal(2)+ Dcal(1)*(Yearday of 2021) in uMol. Drift is Dcal(1) [uMol/day] * Drms: 'RMS drift fit error [uS] * Derr: 'Uncertainty in Dcal; Drift uncertainty is Derr(1) [uMol/day]' Calibration points from the anoxic tank are in structure ***RawS.*** Variable ***meta*** explains each variable, repeated here. * K: 'Temperature [Kelvin]' * O2phase: 'O2 phase tau [uS]' * R: 'Gas constant [J/K/mol] * dyd: 'Time since start of record [days]' * TIME: 'Time [matlab datetime] * Omodel: 'Tau computed from model with drift [uS] * OmodelND: 'Tau computed from model with drift removed [uS] **Full Calibration/** contains the oxic calibration points and calibration coefficients Calibration points from Seabird supplied with optode are in **SBE63/*FactoryCalibration/ ****_dd_mmm_yyyy.mat ***where **** is the optode serial number. The calibration date follows. Variables are * Caltime - Calibration time [matlab datum] * ID - Serial number * O2in_mll - Oxygen in tank from winklers [ml/L] * O2out_mll - Oxygen computed from Seabird calibration [ml/L] * S - Salinity [psu] * T - Temperature [deg C] * resid_mll - model residual [ml/L] * tau_us - optode phase lag [microseconds] The oxic part of the optode model calibration coefficients are in ***SBE63/Calfiles/*** Calibration model, coefficients, and check values are in ***Calfiles/_oxic_model.mat*** where **** is the optode SN Data is in structure ***Kfile*** ***Kfile.meta*** explains the variables, repeated here. Model is pO2=eta/K(T) * (1 + a(T)*eta^2.3)^q(T) ; eta= tau0(T)/tau-1. Note that tau0(T) is computed from *******_Tau0model.mat*** coefficients above. Variables are * Check: 'Test values of T, Tau, and pO2 from SBE cal' * Lk: 'K(T)=polyval(Lk, T) - Matlab call to compute K from Lk polynomial coefficients and T [deg C] * La: 'a(T)=polyval(La,T)' * Lq: 'q(T)=polyval(Lq,T)' **Aanderaa 4330 Optodes** **Anoxic calibration** data and model fit is in ***AnoxicCalibration/AA/*** \** **File names and formats are the same as for SBE63 optodes **Full Calibration/AA** **/Factory Calibrations** contains the calibration information supplied with the optodes Files are *******_dd-mmm-yyyy.mat*** with the same format as for the SBE63 The relevant variables are: * Caltime - Calibration time [matlab datenum] * ID - Serial number of optode * O2in_uMol - Calibration bath oxygen [uMol/L] * S - Salinity [psu] * T - Temperature from optode [deg C] * tau_deg - optode output phase [degrees] * meta - Misc information **/Calfiles/********_M0_oxic_model.mat** contain oxic part of the optode model calibration coefficients The format is the same as for SBE63, but there is an extra variable * eta_off: Add this to eta to account for drift since calibration [uS] ## **Calibrated Oxygen.zip** contains both uncalibrated and calibrated optode data for both the ODZ and Argo floats. A README file and Matlab processing programs are included. /***SBE63/xo110**-***.mat*** contain the calibrated data for **ODZ float xo110** Format and data is identical to that in the ***optode*** structure in ***ODZ_Level2_Mat,*** but with 2 extra variables * pO2 – partial pressure of oxygen [mbar] in uncalibrated data * Cal – a structure containing calibrated data -- FINAL DATA IS HERE * pO2: partial pressure of oxygen [mbar] in calibrated data * Tau0m: Calibration model of anoxic phase [microsecond]. Includes offset. * Tau: Measured phase [microsecond] * Tauoff: offset in Tau from in situ calibration [uS] * eta: (Tau0m+Tauoff)/Tau-1 * O2uM: oxygen concentration [micromoles/kg] * O2umol: same Note that optode(1) is the water oxygen. Optode(2) is a reference optode, which is not of scientific interest. **/SBE63/Reprocess_SBE63.m** is a MATLAB script showing how to combine calibration data and float data to make calibrated data for SBE63 optodes **/AA/Mat/*FloatID*/*FloatID_profilenum*.mat** contains Argo float data from float FloatID, profile number profilenum. Variables are Data from Argos float archive * mtime, time - time in datetime and datenum formats * lat, lon - GPS position latitude degrees and longitude degrees * P, T, S - CTD pressure [dbar], temperature [deg C], salinity [psu] * Optode - Optode serial number * O2T - Optode temperature [deg C] * O2phase - Optode phase [degrees] * O2umol - Optode oxygen [micromole/kg] Added variables * Kfile - Structure as in Optode Calibration files. Kfile.meta also has metadata * Cal - Structure containing calibrated optode data on the same timebase * Tau - measured phase [degrees] * Tau0m - Model anoxic phase [degrees] * Tauoff - Offset from laboratory calibration [degrees]. Includes offset & drift. * Drift - Drift [degrees/year] * mtime0 - base time for drift [matlab datenum format] * eta - Tau0m/Tau-1 * pO2 - Calibrated Oxygen partial pressure [mbar] * O2umol - Calibrated Oxygen concentration [micromole/kg] * meta - similar list to this one. * SN - same as Optode * Float - FloatID **/AA/Mat/*FloatID*/*FloatID_profilenum*.xls** contains the calibrated data in Excel format ***/AA/Reprocess_3_AA.m*** is a MATLAB script showing how to combine calibration data and float data to make calibrated data for AA optodes ## ***ODZ Raw\.zip*** contains the raw data from 9 custom-built ODZ floats. Level_1 in NASAspeak. They can be read by ***MRVFloatDecode_2023.m*** included in ***ODZ Level 2 files*** ## Code/Software Processing and reading scripts in Matlab (24.1.0.2628055 (R2024a) Update 4) are provided.more » « less
An official website of the United States government
