skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Francis, Leia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ramella-Roman, Jessica C; Ma, Hui; Vitkin, I Alex; Elson, Daniel S; Novikova, Tatiana (Ed.)
    We present a method to determine the Mueller matrix of a sample using polarization-entangled photon pairs. One of the photons of a pair goes through a sample and is then subject to a polarization projection measurement. The other photon, which does not go through the sample, is also subject to a polarization projection. The measured quantum correlations are equivalent to polarimetry measurements, where the initial state of the photon going through the sample is determined by the polarization projection on the entangled partner that does not go through the sample. The correspondence with the classical system is acausal because quantum measurements apply to distinct Hilbert spaces. We tested this method with standard optical elements finding excellent agreement with the expectations. Thus it can be used as an alternative to classical Mueller polarimetry for conditions that would be challenging to do otherwise. 
    more » « less
  2. This article presents a table-top experiment that acquires the interference pattern from single photons passing through a double-slit. The experiment is carried out using the heralded, single-photon experimental setup now affordable and fairly common in advanced instructional laboratories. By scanning a single-photon detector on a translation stage, this experiment is implemented without the need of an expensive gate-intensified CCD camera. The authors compare the acquired single-slit and double-slit interference patterns to predicted ones and include a quantum eraser measurement. The experiments are dramatic demonstrations of wave-particle quantum effects and are excellent additions to the collection of single-photon experiments that have been developed over the past several years for the advanced instructional laboratory curriculum. 
    more » « less