skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Young's double-slit interference demonstration with single photons
This article presents a table-top experiment that acquires the interference pattern from single photons passing through a double-slit. The experiment is carried out using the heralded, single-photon experimental setup now affordable and fairly common in advanced instructional laboratories. By scanning a single-photon detector on a translation stage, this experiment is implemented without the need of an expensive gate-intensified CCD camera. The authors compare the acquired single-slit and double-slit interference patterns to predicted ones and include a quantum eraser measurement. The experiments are dramatic demonstrations of wave-particle quantum effects and are excellent additions to the collection of single-photon experiments that have been developed over the past several years for the advanced instructional laboratory curriculum.  more » « less
Award ID(s):
2011937
PAR ID:
10525470
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
American Journal of Physics
Volume:
92
Issue:
4
ISSN:
0002-9505
Page Range / eLocation ID:
308 to 316
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract It is well-known in optics that the spectroscopic resolution of a diffraction grating is much better compared to an interference device having just two slits, as in Young’s famous double-slit experiment. On the other hand, it is well known that a classical superconducting quantum interference device (SQUID) is analogous to the optical double-slit experiment. Here we report experiments and present a model describing a superconducting analogue to the diffraction grating, namely an array of superconducting islands positioned on a topological insulator film Bi0.8Sb1.2Te3. In the limit of an extremely weak field, of the order of one vortex per the entire array, such devices exhibit a critical current peak that is much sharper than the analogous peak of an ordinary SQUID. Therefore, such arrays can be used as sensitive absolute magnetic field sensors. A key finding is that the device acts as a superconducting diode, controlled by magnetic field. 
    more » « less
  2. Previous work has highlighted the difficulties students have when explaining wave behavior. We present an investigation of chemistry students’ understanding of the double-slit experiment, where students were asked to explain a series of PhET simulations illustrating a single continuous light source, single-slit diffraction, and double-slit interference. We observed a variation in student reasoning and students were categorized into groups based on their ability to explain and generate a mechanism for the double-slit experiment. Some students struggled to explain the features of waves which impacted their reasoning about interference and caused them to rely on intuition to generate explanations. Other students were able to productively incorporate their previous knowledge about wave behavior, with their observations from the simulations, to build a robust mechanism for wave interference. However, students generally exhibited a limited understanding of interference, and specifically attending to the key features of waves during instruction can promote more sophisticated reasoning about this phenomenon. 
    more » « less
  3. Interference observed in a double-slit experiment most conclusively demonstrates the wave properties of particles. We construct a quantum mechanical double-slit interferometer by rovibrationally exciting molecular deuterium (D 2 ) in a biaxial ( v = 2, j = 2) state using Stark-induced adiabatic Raman passage, where v and j represent the vibrational and rotational quantum numbers, respectively. In D 2 ( v = 2, j = 2) → D 2 ( v = 2, j ′ = 0) rotational relaxation via a cold collision with ground state helium, the two coherently coupled bond axis orientations in the biaxial state act as two slits that generate two indistinguishable quantum mechanical pathways connecting initial and final states of the colliding system. The interference disappears when we decouple the two orientations of the bond axis by separately constructing the uniaxial states of D 2 , unequivocally establishing the double-slit action of the biaxial state. This double slit opens new possibilities in the coherent control of molecular collisions. 
    more » « less
  4. The double-slit experiment has long been pivotal in understanding matter’s wave–particle duality. A central question revolves around Born’s interpretation of wavefunction whether a single photon demonstrates a 50% probability of passing through each slit individually as particles or simultaneously traverses both as waves. Experimentally, once the photon’s path is detected, the observer effect causes its wavefunction to collapse, rendering the results inconclusive. Designing an experiment to minimize instrumental involvement during the wavefunction collapse of photons, while aiming to gain insight into its collapse mechanism, becomes necessary. We propose a revised experiment that replaces the traditional setup with two Au nanoparticles acting as observers, triggering photon collapse before spectrum collection. In single-photon scenarios, we consider two assumptions: first, the photon wavefunctions collapse into a particle and transfer energy to one of the nanoparticles exclusively, and second, the photon acts as a wave, splitting and transferring its energy to two nanoparticles simultaneously, which does not align well with Born’s interpretation of wavefunction as spatial probabilities. These two assumptions would generate distinctly different spectra. Conversely, in high-intensity experiments, both nanoparticles collectively undergo excitation, regardless of the collapse mechanism. A comparative analysis of scattering spectra under the two conditions reveals crucial insights into the genuine nature of photon collapse. We also proposed using two molecules attached to a metal nanoparticle as an alternative design. Whether affirming or refuting the observer effect, this research holds promise for resolving the theoretical debate surrounding the collapse of wavefunctions and advancing quantum computing and communication fields. 
    more » « less
  5. Parks, Beth (Ed.)
    We describe a study focusing on students' and faculty members' reasoning about problems of differing cognitive complexity related to the double-slit experiment (DSE) with single particles. In the first phase of the study, students in advanced quantum mechanics courses were asked these questions in written form. Additionally, individual interviews were conducted with ten students in which they were asked follow-up questions to make their thought processes explicit on the challenging problems. Students did well on the straightforward problem, showing they had some knowledge of the DSE after traditional instruction, but they struggled on the more complex ones. Even if explicitly asked to do so in interviews, students were often uncomfortable performing calculations or making approximations and simplifications, instead preferring to stick with their gut feeling. In the second phase of the study, the problems were broken down into more pointed questions to investigate whether students had knowledge of relevant concepts, whether they would do calculations as part of their solution approach if explicitly asked, and whether they explicitly noted using their gut feeling. While the faculty members' responses suggest that they could seamlessly move between conceptual and quantitative reasoning, most students were unable to combine concepts represented by different equations to solve the problems quantitatively. We conclude with instructional implications. 
    more » « less