skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Frederich, Markus"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The American lobster (Homarus americanusMilne Edwards, 1837) is an ecologically and economically valuable invertebrate in the Northwest Atlantic. Its geographic range is shifting northward due to ocean warming. While extensive research on the thermal tolerance of this species has been performed on adults and postlarvae, there have been few studies focused on its multiple early developmental stages. We applied transcriptomics to investigate transcriptional changes in laboratory-reared American lobster developmental stages I through V. Changes in gene expression were contextualized in the ontogenetic shifts in distribution that these different life history stages experience, with highly active stage IV exhibiting increased cellular metabolism and shell-building processes. We identified differential expression of transcripts related to thermal and UV stress in planktonic stages I-IV compared to benthic stage V, which suggests innate molecular defenses against these stressors. Together, these findings further our understanding of crustacean development in the context of climate change and can be used to inform population distribution modeling efforts. They also provide evidence for the need to investigate the potential trade-offs associated with responding to a changing environment on a stage-by-stage basis. 
    more » « less
  2. Abstract The early detection of invasive species is essential to cease the spread of the species before it can cause irreversible damage to the environment. The analysis of environmental DNA (eDNA) has emerged as a non-harmful method to detect the presence of a species before visual detection and is a promising approach to monitor invasive species. Few studies have investigated the use of eDNA for arthropods, as their exoskeleton is expected to limit the release of eDNA into the environment. We tested published primers for the invasive European green crab,Carcinus maenas, in the Gulf of Maine and found them not species-specific enough for reliable use outside of the area for which they were designed for. We then designed new primers, tested them against a broad range of local faunal species, and validated these primers in a field study. We demonstrate that eDNA analyses can be used for crustaceans with an exoskeleton and suggest that primers and probe sequences must be tested on local fauna at each location of use to ensure no positive amplification of these other species. 
    more » « less
  3. Abstract BackgroundEnvironmental DNA (eDNA) is an effective tool for the detection and monitoring of presence or absence of rare and invasive species. These techniques have been extended to quantify biomass in vertebrates, particularly in fish species. However, the efficacy of eDNA techniques to quantify biomass in invertebrate species has rarely been examined. This study tested whether eDNA could be used to determine the biomass of the world-wide invasive green crab,Carcinus maenas. In a controlled laboratory study, the relationship between biomass andC. maenaseDNA concentration was examined in the context of different biotic (activity) and abiotic (temperature) parameters. ResultsWhen incubating different numbers of crabs in sterile saltwater for up to 7 days, a relationship between eDNA concentration and biomass was observed at temperatures of 6.7 ℃ and 18.7 ℃, but not at 12.8 ℃. Additionally, motor activity, aggression level, time of sampling, and features of organismal decay had significant impact on the concentration ofC. maenaseDNA collected. ConclusionsWe show that eDNA concentration did not correlate with biomass, and that biomass, temperature, organismal characteristics, and potentially many more parameters affect shedding and degradation rates for eDNA in this species, thus, impacting the recoverable eDNA concentration. Therefore, eDNA techniques are not likely to provide a reliable signal of biomass in the invasive invertebrate speciesC. maenas. 
    more » « less