skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Frey, Serita D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Understanding factors influencing carbon effluxes from soils to the atmosphere is important in a world experiencing climatic change. Two important uncertainties related to soil organic carbon (SOC) stock responses to a changing climate are (a) whether soil microbial communities acclimate or adapt to changes in soil temperature and (b) how to represent this process in SOC models. To further explore these issues, we included thermal adaptation of enzyme‐mediated processes in a mechanistic SOC model (ReSOM) using the macromolecular rate theory. Thermal adaptation is defined here to encompass all potential responses of soil microbes and microbial communities following a change in temperature. To assess the effects of thermal adaptation of enzyme‐mediated processes on simulated SOC losses, ReSOM was applied to data collected from a 13‐year soil warming experiment. Results show that a model omitting thermal adaptation of enzyme‐mediated processes substantially overestimates observed CO2effluxes during the initial years of soil warming. The bias against observed CO2effluxes was lower for models including thermal adaptation of enzyme‐mediated processes. In addition, for a simulated linear 3°C soil warming over 100 years, models including thermal adaptation of enzyme‐mediated processes simulated SOC losses of a factor of three smaller than models omitting this process. As thermal adaptation of microbial community characteristics is generally not included in models simulating feedback between the soil, biosphere and atmosphere, we encourage future studies to assess the potential impact that microbial adaptation has on soil carbon – climate feedback representations in models. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Free, publicly-accessible full text available December 1, 2025
  3. ABSTRACT The ability of trees to acquire soil nutrients under future climate conditions will influence forest composition and function in a warmer world. Rarely are multiple belowground carbon allocation pathways measured simultaneously in large global change experiments, restricting our understanding of how trees may shift their allocation of resources to different nutrient acquisition mechanisms under future climates. Leveraging a 20‐year soil warming experiment, we show that ectomycorrhizal (EM) trees reduce mycorrhizal colonization and root exudation while increasing fine root biomass, while arbuscular mycorrhizal (AM) trees largely maintained their belowground carbon allocation patterns in warmer soils. We suggest that AM trees may be better adapted to thrive under global warming due to higher rates of nitrogen mineralization in warmer soils and the ability of their mycorrhizal symbiont to acquire mineralized inorganic nutrients, whereas EM trees may need to alter their belowground carbon allocation patterns to remain competitive as global temperatures rise. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  4. Vestergård, Mette (Ed.)
    Across biomes, soil biodiversity promotes ecosystem functions. However, whether this relationship will be maintained within ecosystems under climate change is uncertain. Here, using two long-term soil warming experiments, we investigated how warming affects the relationship between ecosystem functions and bacterial diversity across seasons, soil horizons, and warming duration. Soils were sampled from these warming experiments located at the Harvard Forest Long-Term Ecological Research (LTER) site, where soils had been heated +5°C above ambient for 13 or 28 years at the time of sampling. We assessed seven measurements representative of different ecosystem functions and nutrient pools. We also surveyed bacterial community diversity. We found that ecosystem function was significantly affected by season, with autumn samples having a higher intercept than summer samples in our model, suggesting a higher overall baseline of ecosystem function in the fall. The effect of warming on bacterial diversity was similarly affected by season, where warming in the summer was associated with decreased bacterial evenness in the organic horizon. Despite the decreased bacterial evenness in the warmed plots, we found that the relationship between ecosystem function and bacterial diversity was unaffected by warming or warming duration. Our findings highlight that season is a consistent driver of ecosystem function as well as a modulator of climate change effects on bacterial community evenness. 
    more » « less
    Free, publicly-accessible full text available October 24, 2025
  5. Abstract Climate change may alter soil microbial communities and soil organic matter (SOM) composition. Soil carbon (C) cycling takes place over multiple time scales; therefore, long-term studies are essential to better understand the factors influencing C storage and help predict responses to climate change. To investigate this further, soils that were heated by 5 °C above ambient soil temperatures for 18 years were collected from the Barre Woods Soil Warming Study at the Harvard Forest Long-term Ecological Research site. This site consists of large 30 × 30 m plots (control or heated) where entire root systems are exposed to sustained warming conditions. Measurements included soil C and nitrogen concentrations, microbial biomass, and SOM chemistry using gas chromatography–mass spectrometry and solid-state13C nuclear magnetic resonance spectroscopy. These complementary techniques provide a holistic overview of all SOM components and a comprehensive understanding of SOM composition at the molecular-level. Our results showed that soil C concentrations were not significantly altered with warming; however, various molecular-level alterations to SOM chemistry were observed. We found evidence for both enhanced SOM decomposition and increased above-ground plant inputs with long-term warming. We also noted shifts in microbial community composition while microbial biomass remained largely unchanged. These findings suggest that prolonged warming induced increased availability of preferred substrates, leading to shifts in the microbial community and SOM biogeochemistry. The observed increase in gram-positive bacteria indicated changes in substrate availability as gram-positive bacteria are often associated with the decomposition of complex organic matter, while gram-negative bacteria preferentially break down simpler organic compounds altering SOM composition over time. Our results also highlight that additional plant inputs do not effectively offset chronic warming-induced SOM decomposition in temperate forests. 
    more » « less
    Free, publicly-accessible full text available September 1, 2025
  6. The goal of the New Hampshire Soil Sensor Network is to examine spatial and temporal changes in soil properties and processes as the climate changes. Data collected can also calibrate and validate models that examine how ecosystems may respond to changing climate and land use. To determine how soil processes are affected by climate change and land management, this soil sensor network measures snow depth, air temperature, soil temperature, soil volumetric water content, and soil electrical conductivity, as well as soil CO2 fluxes. This data package includes data from the air temperature, soil temperature, soil volumetric water content, and electrical conductivity sensors. Data were collected at the following sites: BRT = Bartlett Experimental Forest, Bartlett, NH; BDF = Burley-Demmerit Farm, Lee, NH; DCF = Dowst Cate Forest, Deerfield, NH; HUB = Hubbard Brook Experimental Forest, Woodstock, NH; SBM = Saddleback Mountain, Deerfield, NH; THF = Thompson Farm, Durham, NH; and Trout Pond Brook, Strafford, NH. 
    more » « less
  7. Soil carbon loss is likely to increase due to climate warming, but microbiomes and microenvironments may dampen this effect. In a 30-year warming experiment, physical protection within soil aggregates affected the thermal responses of soil microbiomes and carbon dynamics. In this study, we combined metagenomic analysis with physical characterization of soil aggregates to explore mechanisms by which microbial communities respond to climate warming across different soil microenvironments. Long-term warming decreased the relative abundances of genes involved in degrading labile compounds (e.g., cellulose), but increased those genes involved in degrading recalcitrant compounds (e.g., lignin) across aggregate sizes. These changes were observed in most phyla of bacteria, especially for Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, and Planctomycetes. Microbial community composition was considerably altered by warming, leading to declined diversity for bacteria and fungi but not for archaea. Microbial functional genes, diversity, and community composition differed between macroaggregates and microaggregates, indicating the essential role of physical protection in controlling microbial community dynamics. Our findings suggest that microbes have the capacity to employ various strategies to acclimate or adapt to climate change (e.g., warming, heat stress) by shifting functional gene abundances and community structures in varying microenvironments, as regulated by soil physical protection. 
    more » « less
  8. Abstract Climate change is affecting fungal communities and their function in terrestrial ecosystems. Despite making progress in the understanding of how the fungal community responds to global change drivers in natural ecosystems, little is known on how fungi respond at the species level. Understanding how fungal species respond to global change drivers, such as warming, is critical, as it could reveal adaptation pathways to help us to better understand ecosystem functioning in response to global change. Here, we present a model study to track species-level responses of fungi to warming—and associated drying—in a decade-long global change field experiment; we focused on two free-living saprotrophic fungi which were found in high abundance in our site, Mortierella and Penicillium. Using microbiological isolation techniques, combined with whole genome sequencing of fungal isolates, and community level metatranscriptomics, we investigated transcription-level differences of functional categories and specific genes involved in catabolic processes, cell homeostasis, cell morphogenesis, DNA regulation and organization, and protein biosynthesis. We found that transcription-level responses were mostly species-specific but that under warming, both fungi consistently invested in the transcription of critical genes involved in catabolic processes, cell morphogenesis, and protein biosynthesis, likely allowing them to withstand a decade of chronic stress. Overall, our work supports the idea that fungi that invest in maintaining their catabolic rates and processes while growing and protecting their cells may survive under global climate change. 
    more » « less