skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Freymueller, J_T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Stress‐based postseismic deformation modeling including afterslip and viscoelastic relaxation usually assumes the coseismic slip distribution and the associated stress perturbation as known. However, that assumption biases the postseismic modeling results by the assumptions that underlie the coseismic models. Importantly, this misses an opportunity to iteratively constrain the coseismic slip model with postseismic observations. We used a broad set of seismic and geodetic data to create multiple coseismic slip models that only differ in the down‐dip extent of the rupture plane and fit the coseismic observations for the July 29, Mw 8.2 Chignik earthquake equally well. We then evaluated the quality of those coseismic slip models based on how well each of them predicts postseismic GNSS displacements using a stress‐driven afterslip model. We find that coseismic slip models that generate afterslip too far down‐dip systematically fail to predict postseismic deformation. We find that the postseismic observations are best predicted by a narrower coseismic slip model that terminates abruptly at its deepest extent. The model predictions improve further if stress‐driven afterslip is combined with a superimposed viscoelastic relaxation response of a 50 km thick elastic lithosphere for the overriding plate and an elastic cold nose to the mantle wedge. 
    more » « less
  2. Abstract Volcanic eruptions pose a significant and sometimes unpredictable hazard, especially at systems that display little to no precursory signals. For example, the 2008 eruption of Okmok volcano in Alaska notably lacked observable short‐term precursors despite years of low‐level unrest. This unpredictability highlights that direct monitoring alone is not always enough to reliably forecast eruptions. In this study, we use the Ensemble Kalman Filter (EnKF) to produce a successful hindcast of the Okmok magma system in the lead up to its 2008 eruption. By assimilating geodetic observations of ground deformation, finite element models track the evolving stress state of the magma system and evaluate its stability using mechanical failure criteria. The hindcast successfully indicates an increased eruption likelihood due to tensile failure weeks in advance of the 2008 eruption. The effectiveness of this hindcast illustrates that EnKF‐based forecasting methods may provide critical information on eruption probability in systems lacking obvious precursors. 
    more » « less