Title: Hindcasting Magma Reservoir Stability Preceding the 2008 Eruption of Okmok, Alaska
Abstract Volcanic eruptions pose a significant and sometimes unpredictable hazard, especially at systems that display little to no precursory signals. For example, the 2008 eruption of Okmok volcano in Alaska notably lacked observable short‐term precursors despite years of low‐level unrest. This unpredictability highlights that direct monitoring alone is not always enough to reliably forecast eruptions. In this study, we use the Ensemble Kalman Filter (EnKF) to produce a successful hindcast of the Okmok magma system in the lead up to its 2008 eruption. By assimilating geodetic observations of ground deformation, finite element models track the evolving stress state of the magma system and evaluate its stability using mechanical failure criteria. The hindcast successfully indicates an increased eruption likelihood due to tensile failure weeks in advance of the 2008 eruption. The effectiveness of this hindcast illustrates that EnKF‐based forecasting methods may provide critical information on eruption probability in systems lacking obvious precursors. more »« less
Gregg, Patricia M.; Albright, John A.; Zhan, Yan; Pettijohn, J. Cory
(, IEEE IGARSS)
null
(Ed.)
Ensemble based data assimilation approaches, such as the Ensemble Kalman Filter (EnKF), have been widely and successfully implemented to combine observations with dynamic forecast models. In this study the EnKF is adapted to assimilate ground deformation observations from interferometric synthetic-aperture radar (InSAR) and GPS into thermomechanical finite element models (FEM) to evaluate volcanic unrest. Two eruption hindcasts are investigated: the 2008 eruption of Okmok volcano, Alaska and the 2018 eruption of Sierra Negra volcano, Galápagos, Ecuador. At Okmok, EnKF forecasts tensile failure and the lateral movement of the magma from a central pressure source in the lead up to its 2008 eruption indicating potential for diking. Alternatively, at Sierra Negra, the EnKF forecasts significant shear failure coincident with a Mw 5.4 earthquake that preceded the 2018 eruption. These successful hindcasts highlight the flexibility and potential of the volcano EnKF approach for near real time monitoring and hazard assessment at active volcanoes worldwide.
Li, Yuyu; Gregg, Patricia M; Lu, Zhong; Wang, Jiahui
(, Frontiers in Earth Science)
Although Veniaminof Volcano in Alaska experiences frequent eruptions and has eight permanent seismic stations, only two of the past 13 eruptions have had precursory signals that prompted a pre-eruption warning from the Alaska Volcano Observatory (AVO) since 1993. Seismic data from Venianimof indicate that most eruptions from 2000 to 2018 do not coincide with increased seismicity. Additionally, analyses of InSAR data available from 2015 to 2018 which covers the pre-, syn-, and post-eruption periods of the 2018 eruption do not show clear signs of deformation. The systemic lack of systematic precursory signals raises critical questions about why some volcanoes do not exhibit clear unrest prior to eruption. Volcanoes that erupt frequently without precursory signals are often classified as “open” systems with magma migrating through an open network to eruption, rather than pausing at a shallow reservoir. However, the precursory signals, or lack thereof, from a small or deep closed magma system may be difficult to observe, resulting in a stealthy eruption mimicking the behavior of an open system. In this study, we utilize finite element, fluid injection models to investigate a hypothetical closed magma system at Veniaminof and evaluate its ability to erupt with no observable early-warning signals. Specifically, a series of numerical experiments are conducted to determine what model configurations lead to stealthy eruptions – i.e., producing ground deformation below the detection threshold for InSAR (<10 mm) and developing no seismicity, yet resulting in tensile failure which will promote diking and eruption. Model results indicate that the primary control on whether eruption precursors from deformation and seismicity will be present are the rheology of the host rock and the magma flux, followed by the secondary control of the size of the magma chamber, and then its depth and shape. Volcanoes with long-lived thermally mature magma systems with moderate to small magma reservoirs are the most likely to exhibit stealthy behavior, with the smallest systems most likely to fail without producing a deformation signal. This result is likely because small, deep magma systems produce minimal surface deformation and seismicity. For stealthy volcanoes like Veniaminof and others in Alaska (e.g., Cleveland, Shishaldin, Pavlof) and around the world, understanding the underlying magma system dynamics and their potential open vs. closed nature through numerical modeling is critical for providing robust forecasts of future eruptive activity.
Garza‐Girón, Ricardo; Brodsky, Emily E.; Spica, Zack J.; Haney, Matthew M.; Webley, Peter W.
(, Journal of Geophysical Research: Solid Earth)
Abstract By providing unrivaled resolution in both time and space, volcano seismicity helps to chronicle and interpret eruptions. Standard earthquake detection methods are often insufficient as the eruption itself produces continuous seismic waves that obscure earthquake signals. We address this problem by developing an earthquake processing workflow specific to a high‐noise volcanic environment and applying it to the explosive 2008 Okmok Volcano eruption. This process includes applying single‐channel template matching combined with machine‐learning and fingerprint‐based techniques to expand the existing earthquake catalog of the eruption. We detected an order of magnitude more earthquakes, then located, relocated, determined locally calibrated magnitudes, and classified the events in the enhanced catalog. This new high‐resolution earthquake catalog increases the number of observations by about a factor of 10 and enables the detailed spatiotemporal seismic analysis during a large eruption.
Abstract Classical mechanisms of volcanic eruptions mostly involve pressure buildup and magma ascent towards the surface1. Such processes produce geophysical and geochemical signals that may be detected and interpreted as eruption precursors1–3. On 22 May 2021, Mount Nyiragongo (Democratic Republic of the Congo), an open-vent volcano with a persistent lava lake perched within its summit crater, shook up this interpretation by producing an approximately six-hour-long flank eruption without apparent precursors, followed—rather than preceded—by lateral magma motion into the crust. Here we show that this reversed sequence was most likely initiated by a rupture of the edifice, producing deadly lava flows and triggering a voluminous 25-km-long dyke intrusion. The dyke propagated southwards at very shallow depth (less than 500 m) underneath the cities of Goma (Democratic Republic of the Congo) and Gisenyi (Rwanda), as well as Lake Kivu. This volcanic crisis raises new questions about the mechanisms controlling such eruptions and the possibility of facing substantially more hazardous events, such as effusions within densely urbanized areas, phreato-magmatism or a limnic eruption from the gas-rich Lake Kivu. It also more generally highlights the challenges faced with open-vent volcanoes for monitoring, early detection and risk management when a significant volume of magma is stored close to the surface.
Chadwick, Jr., William W.; Wilcock, William S. D.; Nooner, Scott L.; Beeson, Jeffrey W.; Sawyer, Audra M.; Lau, T. ‐K.
(, Geochemistry, Geophysics, Geosystems)
Abstract Axial Seamount is a basaltic hot spot volcano with a summit caldera at a depth of ∼1,500 m below sea level, superimposed on the Juan de Fuca spreading ridge, giving it a robust and continuous magma supply. Axial erupted in 1998, 2011, and 2015, and is monitored by a cabled network of instruments including bottom pressure recorders and seismometers. Since its last eruption, Axial has re‐inflated to 85%–90% of its pre‐eruption level. During that time, we have identified eight discrete, short‐term deflation events of 1–4 cm over 1–3 weeks that occurred quasi‐periodically, about every 4–6 months between August 2016 and May 2019. During each short‐term deflation event, the rate of earthquakes dropped abruptly to low levels, and then did not return to higher levels until reinflation had resumed and returned near its previous high. The long‐term geodetic monitoring record suggests that the rate of magma supply has varied by an order of magnitude over decadal time scales. There was a surge in magma supply between 2011 and 2015, causing those two eruptions to be closely spaced in time and the supply rate has been waning since then. This waning supply has implications for eruption forecasting and the next eruption at Axial still appears to be 4–9 years away. We also show that the number of earthquakes per unit of uplift has increased exponentially with total uplift since the 2015 eruption, a pattern consistent with a mechanical model of cumulative rock damage leading to bulk failure during magma accumulation between eruptions.
Albright, J_A, Gregg, P_M, Lu, Z., and Freymueller, J_T.
"Hindcasting Magma Reservoir Stability Preceding the 2008 Eruption of Okmok, Alaska". Geophysical Research Letters 46 (15). Country unknown/Code not available: DOI PREFIX: 10.1029. https://doi.org/10.1029/2019GL083395.https://par.nsf.gov/biblio/10375269.
@article{osti_10375269,
place = {Country unknown/Code not available},
title = {Hindcasting Magma Reservoir Stability Preceding the 2008 Eruption of Okmok, Alaska},
url = {https://par.nsf.gov/biblio/10375269},
DOI = {10.1029/2019GL083395},
abstractNote = {Abstract Volcanic eruptions pose a significant and sometimes unpredictable hazard, especially at systems that display little to no precursory signals. For example, the 2008 eruption of Okmok volcano in Alaska notably lacked observable short‐term precursors despite years of low‐level unrest. This unpredictability highlights that direct monitoring alone is not always enough to reliably forecast eruptions. In this study, we use the Ensemble Kalman Filter (EnKF) to produce a successful hindcast of the Okmok magma system in the lead up to its 2008 eruption. By assimilating geodetic observations of ground deformation, finite element models track the evolving stress state of the magma system and evaluate its stability using mechanical failure criteria. The hindcast successfully indicates an increased eruption likelihood due to tensile failure weeks in advance of the 2008 eruption. The effectiveness of this hindcast illustrates that EnKF‐based forecasting methods may provide critical information on eruption probability in systems lacking obvious precursors.},
journal = {Geophysical Research Letters},
volume = {46},
number = {15},
publisher = {DOI PREFIX: 10.1029},
author = {Albright, J_A and Gregg, P_M and Lu, Z. and Freymueller, J_T},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.