Experiments at particle colliders are the primary source of insight into physics at microscopic scales. Searches at these facilities often rely on optimization of analyses targeting specific models of new physics. Increasingly, however, data-driven model-agnostic approaches based on machine learning are also being explored. A major challenge is that such methods can be highly sensitive to the presence of many irrelevant features in the data. This paper presents Boosted Decision Tree (BDT)-based techniques to improve anomaly detection in the presence of many irrelevant features. First, a BDT classifier is shown to be more robust than neural networks for the Classification Without Labels approach to finding resonant excesses assuming independence of resonant and non-resonant observables. Next, a tree-based probability density estimator using copula transformations demonstrates significant stability and improved performance over normalizing flows as irrelevant features are added. The results make a compelling case for further development of tree-based algorithms for more robust resonant anomaly detection in high energy physics.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A bstract Free, publicly-accessible full text available February 1, 2025 -
Abstract transitions are known to provide theoretically clean information about the CKM angle$$B^\pm \rightarrow DK^\pm $$ , with the most precise available methods exploiting the cascade decay of the neutral$$\gamma $$ D intoCP self-conjugate states. Such analyses currently require binning in theD decay Dalitz plot, while a recently proposed method replaces this binning with the truncation of a Fourier series expansion. In this paper, we present a proof of principle of a novel alternative to these two methods, in which no approximations at the level of the data representation are required. In particular, our new strategy makes no assumptions about the amplitude and strong phase variation over the Dalitz plot. This comes at the cost of a degree of ambiguity in the choice of test statistic quantifying the compatibility of the data with a given value of , with improved choices of test statistic yielding higher sensitivity. While our current proof-of-principle implementation does not demonstrate optimal sensitivity to$$\gamma $$ , its conceptually novel approach opens the door to new strategies for$$\gamma $$ extraction. More studies are required to see if these can be competitive with the existing methods.$$\gamma $$ -
Abstract Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can decay far from the interaction vertex of the primary proton–proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP signatures at the LHC is beneficial to ensure that possible avenues of the discovery of new physics are not overlooked. Here we report on the joint work of a community of theorists and experimentalists with the ATLAS, CMS, and LHCb experiments—as well as those working on dedicated experiments such as MoEDAL, milliQan, MATHUSLA, CODEX-b, and FASER—to survey the current state of LLP searches at the LHC, and to chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the high-luminosity LHC. The work is organized around the current and future potential capabilities of LHC experiments to generally discover new LLPs, and takes a signature-based approach to surveying classes of models that give rise to LLPs rather than emphasizing any particular theory motivation. We develop a set of simplified models; assess the coverage of current searches; document known, often unexpected backgrounds; explore the capabilities of proposed detector upgrades; provide recommendations for the presentation of search results; and look towards the newest frontiers, namely high-multiplicity ‘dark showers’, highlighting opportunities for expanding the LHC reach for these signals.