skip to main content


This content will become publicly available on April 1, 2025

Title: New basis for Hamiltonian SU(2) simulations

Due to rapidly improving quantum computing hardware, Hamiltonian simulations of relativistic lattice field theories have seen a resurgence of attention. This computational tool requires turning the formally infinite-dimensional Hilbert space of the full theory into a finite-dimensional one. For gauge theories, a widely used basis for the Hilbert space relies on the representations induced by the underlying gauge group, with a truncation that keeps only a set of the lowest dimensional representations. This works well at large bare gauge coupling, but becomes less efficient at small coupling, which is required for the continuum limit of the lattice theory. In this work, we develop a new basis suitable for the simulation of an SU(2) lattice gauge theory in the maximal tree gauge. In particular, we show how to perform a Hamiltonian truncation so that the eigenvalues of both the magnetic and electric gauge-fixed Hamiltonian are mostly preserved, which allows for this basis to be used at all values of the coupling. Little prior knowledge is assumed, so this may also be used as an introduction to the subject of Hamiltonian formulations of lattice gauge theories.

Published by the American Physical Society2024 
more » « less
Award ID(s):
2014071
PAR ID:
10556983
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Phys.Rev.D 109 (2024) 7, 074501
Date Published:
Journal Name:
Physical Review D
Volume:
109
Issue:
7
ISSN:
2470-0010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider a SU(2) lattice gauge theory on the square lattice, with a single fundamental complex fermion and a single fundamental complex boson on each lattice site. Projective symmetries of the gauge-charged fermions are chosen so that they match with those of the spinons of theπ-flux spin liquid. Global symmetries of all gauge-invariant observables are chosen to match with those of the particle-hole symmetric electronic Hubbard model at half-filling. Consequently, both the fundamental fermion and fundamental boson move in an average backgroundπ-flux, their gauge-invariant composite is the physical electron, and eliminating gauge fields in a strong gauge-coupling expansion yields an effective extended Hubbard model for the electrons. The SU(2) gauge theory displays several confining/Higgs phases: a nodald-wave superconductor, and states with Néel, valence-bond solid, charge, or staggered current orders. There are also a number of quantum phase transitions between these phases that are very likely described by(2+1)-dimensional deconfined conformal gauge theories, and we present large flavor expansions for such theories. These include the phenomenologically attractive case of a transition between a conventional insulator with a charge gap and Néel order, and a conventionald-wave superconductor with gapless Bogoliubov quasiparticles at four nodal points in the Brillouin zone. We also apply our approach to the honeycomb lattice, where we find a bicritical point at the junction of Néel, valence bond solid (Kekulé), and Dirac semimetal phases.

    Published by the American Physical Society2024 
    more » « less
  2. Fixed point lattice actions are designed to have continuum classical properties unaffected by discretization effects and reduced lattice artifacts at the quantum level. They provide a possible way to extract continuum physics with coarser lattices, thereby allowing one to circumvent problems with critical slowing down and topological freezing toward the continuum limit. A crucial ingredient for practical applications is to find an accurate and compact parametrization of a fixed point action, since many of its properties are only implicitly defined. Here we use machine learning methods to revisit the question of how to parametrize fixed point actions. In particular, we obtain a fixed point action for four-dimensional SU(3) gauge theory using convolutional neural networks with exact gauge invariance. The large operator space allows us to find superior parametrizations compared to previous studies, a necessary first step for future Monte Carlo simulations and scaling studies.

    <supplementary-material><permissions><copyright-statement>Published by the American Physical Society</copyright-statement><copyright-year>2024</copyright-year></permissions></supplementary-material></sec> </div> <a href='#' class='show open-abstract' style='margin-left:10px;'>more »</a> <a href='#' class='hide close-abstract' style='margin-left:10px;'>« less</a> </div><div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemscope itemtype="http://schema.org/TechArticle"> <div class="item-info"> <div class="title"> <a href="https://par.nsf.gov/biblio/10533572-simulating-open-quantum-systems-using-hamiltonian-simulations" itemprop="url"> <span class='span-link' itemprop="name">Simulating Open Quantum Systems Using Hamiltonian Simulations</span> </a> </div> <div> <strong> <a class="misc external-link" href="https://doi.org/10.1103/PRXQuantum.5.020332" target="_blank" title="Link to document DOI">https://doi.org/10.1103/PRXQuantum.5.020332  <span class="fas fa-external-link-alt"></span></a> </strong> </div> <div class="metadata"> <span class="authors"> <span class="author" itemprop="author">Ding, Zhiyan</span> <span class="sep">; </span><span class="author" itemprop="author">Li, Xiantao</span> <span class="sep">; </span><span class="author" itemprop="author">Lin, Lin</span> </span> <span class="year">( <time itemprop="datePublished" datetime="2024-05-01">May 2024</time> , PRX Quantum) </span> </div> <div style="cursor: pointer;-webkit-line-clamp: 5;" class="abstract" itemprop="description"> <p>We present a novel method to simulate the Lindblad equation, drawing on the relationship between Lindblad dynamics, stochastic differential equations, and Hamiltonian simulations. We derive a sequence of unitary dynamics in an enlarged Hilbert space that can approximate the Lindblad dynamics up to an arbitrarily high order. This unitary representation can then be simulated using a quantum circuit that involves only Hamiltonian simulation and tracing out the ancilla qubits. There is no need for additional postselection in measurement outcomes, ensuring a success probability of one at each stage. Our method can be directly generalized to the time-dependent setting. We provide numerical examples that simulate both time-independent and time-dependent Lindbladian dynamics with accuracy up to the third order.</p> <sec><supplementary-material><permissions><copyright-statement>Published by the American Physical Society</copyright-statement><copyright-year>2024</copyright-year></permissions></supplementary-material></sec> </div> <a href='#' class='show open-abstract' style='margin-left:10px;'>more »</a> <a href='#' class='hide close-abstract' style='margin-left:10px;'>« less</a> </div><div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemscope itemtype="http://schema.org/TechArticle"> <div class="item-info"> <div class="title"> <a href="https://par.nsf.gov/biblio/10515604-matrix-product-study-spin-fractionalization-one-dimensional-kondo-insulator" itemprop="url"> <span class='span-link' itemprop="name">Matrix product study of spin fractionalization in the one-dimensional Kondo insulator</span> </a> </div> <div> <strong> <a class="misc external-link" href="https://doi.org/10.1103/PhysRevResearch.6.023227" target="_blank" title="Link to document DOI">https://doi.org/10.1103/PhysRevResearch.6.023227  <span class="fas fa-external-link-alt"></span></a> </strong> </div> <div class="metadata"> <span class="authors"> <span class="author" itemprop="author">Chen, Jing</span> <span class="sep">; </span><span class="author" itemprop="author">Stoudenmire, E Miles</span> <span class="sep">; </span><span class="author" itemprop="author">Komijani, Yashar</span> <span class="sep">; </span><span class="author" itemprop="author">Coleman, Piers</span> </span> <span class="year">( <time itemprop="datePublished" datetime="2024-06-01">June 2024</time> , Physical Review Research) </span> </div> <div style="cursor: pointer;-webkit-line-clamp: 5;" class="abstract" itemprop="description"> <p>The Kondo lattice is one of the classic examples of strongly correlated electronic systems. We conduct a controlled study of the Kondo lattice in one dimension, highlighting the role of excitations created by the composite fermion operator. Using time-dependent matrix product state methods, we compute various correlation functions and contrast them with both large-N mean-field theory and the strong-coupling expansion. We show that the composite fermion operator creates long-lived, charge-e and spin-1/2 excitations, which cover the low-lying single-particle excitation spectrum of the system. Furthermore, spin excitations can be thought to be composed of such fractionalized quasiparticles with a residual interaction which tend to disappear at weak Kondo coupling.</p> <sec><supplementary-material><permissions><copyright-statement>Published by the American Physical Society</copyright-statement><copyright-year>2024</copyright-year></permissions></supplementary-material></sec> </div> <a href='#' class='show open-abstract' style='margin-left:10px;'>more »</a> <a href='#' class='hide close-abstract' style='margin-left:10px;'>« less</a> </div><div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemscope itemtype="http://schema.org/TechArticle"> <div class="item-info"> <div class="title"> <a href="https://par.nsf.gov/biblio/10530889-instantons-theories-transseries-virial-theorems-numerical-aspects" itemprop="url"> <span class='span-link' itemprop="name">Instantons in ϕ4 theories: Transseries, virial theorems, and numerical aspects</span> </a> </div> <div> <strong> <a class="misc external-link" href="https://doi.org/10.1103/PhysRevD.110.036003" target="_blank" title="Link to document DOI">https://doi.org/10.1103/PhysRevD.110.036003  <span class="fas fa-external-link-alt"></span></a> </strong> </div> <div class="metadata"> <span class="authors"> <span class="author" itemprop="author">Giorgini, Ludovico T</span> <span class="sep">; </span><span class="author" itemprop="author">Jentschura, Ulrich D</span> <span class="sep">; </span><span class="author" itemprop="author">Malatesta, Enrico M</span> <span class="sep">; </span><span class="author" itemprop="author">Rizzo, Tommaso</span> <span class="sep">; </span><span class="author" itemprop="author">Zinn-Justin, Jean</span> </span> <span class="year">( <time itemprop="datePublished" datetime="2024-08-01">August 2024</time> , Physical Review D) </span> </div> <div style="cursor: pointer;-webkit-line-clamp: 5;" class="abstract" itemprop="description"> <p>We discuss numerical aspects of instantons in two- and three-dimensional<math display='inline'><msup><mi>ϕ</mi><mn>4</mn></msup></math>theories with an internal<math display='inline'><mi>O</mi><mo stretchy='false'>(</mo><mi>N</mi><mo stretchy='false'>)</mo></math>symmetry group, the so-called<math display='inline'><mi>N</mi></math>-vector model. By combining asymptotic transseries expansions for large arguments with convergence acceleration techniques, we obtain high-precision values for certain integrals of the instanton that naturally occur in loop corrections around instanton configurations. Knowledge of these numerical properties is necessary in order to evaluate corrections to the large-order factorial growth of perturbation theory in<math display='inline'><msup><mi>ϕ</mi><mn>4</mn></msup></math>theories. The results contribute to the understanding of the mathematical structures underlying the instanton configurations.</p> <sec><supplementary-material><permissions><copyright-statement>Published by the American Physical Society</copyright-statement><copyright-year>2024</copyright-year></permissions></supplementary-material></sec> </div> <a href='#' class='show open-abstract' style='margin-left:10px;'>more »</a> <a href='#' class='hide close-abstract' style='margin-left:10px;'>« less</a> </div><div class="clearfix"></div> </div> </li> </ol> <div class="push_top"></div> </div> </div> <div class="col-md-3"> <div id="citation-sidebar"> <ul class="nav nav-list" id="citation-fulltext-sidebar" style="font-size: 14px; font-family: Georgia Regular;"> <li style="font-weight: bold; margin-bottom: 5px; font-size:13px;">Free Publicly Accessible Full Text</li> <li class="small"> This content will become publicly available on April 1, 2025</li> <li class="divider"></li> <li style="font-weight: bold;font-size:13px;">Journal Article:</li> <li style="word-break:break-all" class="small"> <a href="https://doi.org/10.1103/PhysRevD.109.074501" target="_blank" rel="noopener noreferrer" title="Document DOI URL" class="external-link" data-ostiid="10556983" style="word-wrap: break-word;">https://doi.org/10.1103/PhysRevD.109.074501  <span class="fas fa-external-link-alt"></span></a></li> </ul> <div class="hidden-print"> <ul class="nav nav-list clearfix" id="sidebar-feedback" style="margin-top: 20px; margin-bottom: 20px; clear: both;"> <li style="position: relative;"> <div class="feedback-container"> <div style="font-family: Georgia Regular; font-size: 14px; color: #313b52; padding:20px;"> Have feedback or suggestions for a way to improve these results?<br/> <span style="text-decoration: underline;"> <script type="text/javascript" defer>/* <![CDATA[ */ user = "feedback"; site = "research.gov"; subject = "?subject=Comments or Suggestions"; content = "<span class='fa fa-envelope'></span><span class='span-link' style='padding-left:5px'>Let us know</span>"; id = ""; document.write('<a itemprop="'+ id +'" href="mailto:' + user + '@' + site + subject + '">' + (content != '' ? content : (user + '@' + site)) + '</a>'); /* ]]> */</script> <noscript></noscript>!</span> </div> </li> </ul> <ul class="nav nav-list" style="font-size: 14px; font-family: Arial Regular;"> <li class="nav-header header-format">Citation Formats</li> <li class="links-format"><a href="#cite-mla" data-toggle="modal">MLA</a> <div id="cite-mla" class="modal" tabindex="-1" role="dialog" aria-labelledby="cite-mla_label" aria-hidden="true"> <div class="modal-dialog"> <div class="modal-content"> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal" aria-hidden="true">×</button> <strong id="cite-mla_label">Cite: MLA Format</strong> </div> <div class="modal-body" >D’Andrea, Irian, Bauer, Christian W, Grabowska, Dorota M, and Freytsis, Marat. <em>New basis for Hamiltonian SU(2) simulations</em>. Retrieved from https://par.nsf.gov/biblio/10556983. <em>Physical Review D</em> 109.7 Web. doi:10.1103/PhysRevD.109.074501. </div> <div class="modal-footer"> <button class="btn btn-sm btn-default" data-dismiss="modal" aria-hidden="true">Close</button> </div> </div> </div> </div></li> <li class="links-format"><a href="#cite-apa" data-toggle="modal">APA</a> <div id="cite-apa" class="modal" tabindex="-1" role="dialog" aria-labelledby="cite-apa_label" aria-hidden="true"> <div class="modal-dialog"> <div class="modal-content"> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal" aria-hidden="true">×</button> <strong id="cite-apa_label">Cite: APA Format</strong> </div> <div class="modal-body">D’Andrea, Irian, Bauer, Christian W, Grabowska, Dorota M, & Freytsis, Marat. <em>New basis for Hamiltonian SU(2) simulations</em>. <em>Physical Review D</em>, <em>109</em> (7). Retrieved from https://par.nsf.gov/biblio/10556983. <a href="https://doi.org/10.1103/PhysRevD.109.074501">https://doi.org/10.1103/PhysRevD.109.074501</a> </div> <div class="modal-footer"> <button class="btn btn-sm btn-default" data-dismiss="modal" aria-hidden="true">Close</button> </div> </div> </div> </div></li> <li class="links-format"><a href="#cite-chi" data-toggle="modal">Chicago</a> <div id="cite-chi" class="modal" tabindex="-1" role="dialog" aria-labelledby="cite-chi_label" aria-hidden="true"> <div class="modal-dialog"> <div class="modal-content"> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal" aria-hidden="true">×</button> <strong id="cite-chi_label">Cite: Chicago Format</strong> </div> <div class="modal-body">D’Andrea, Irian, Bauer, Christian W, Grabowska, Dorota M, and Freytsis, Marat. "New basis for Hamiltonian SU(2) simulations". <em>Physical Review D</em> 109 (7). Country unknown/Code not available: Phys.Rev.D 109 (2024) 7, 074501. <a href="https://doi.org/10.1103/PhysRevD.109.074501">https://doi.org/10.1103/PhysRevD.109.074501.</a> <a href="https://par.nsf.gov/biblio/10556983">https://par.nsf.gov/biblio/10556983</a>. </div> <div class="modal-footer"> <button class="btn btn-sm btn-default" data-dismiss="modal" aria-hidden="true">Close</button> </div> </div> </div> </div></li> <li class="links-format"><a href="#cite-bib" data-toggle="modal">BibTeX</a> <div id="cite-bib" class="modal" tabindex="-1" role="dialog" aria-labelledby="cite-bib_label" aria-hidden="true"> <div class="modal-dialog"> <div class="modal-content"> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal" aria-hidden="true">×</button> <strong id="cite-bib_label">Cite: BibTeX Format</strong> </div> <div class="modal-body"> @article{osti_10556983,<br/> place = {Country unknown/Code not available}, title = {New basis for Hamiltonian SU(2) simulations}, url = {https://par.nsf.gov/biblio/10556983}, DOI = {10.1103/PhysRevD.109.074501}, abstractNote = {Due to rapidly improving quantum computing hardware, Hamiltonian simulations of relativistic lattice field theories have seen a resurgence of attention. This computational tool requires turning the formally infinite-dimensional Hilbert space of the full theory into a finite-dimensional one. For gauge theories, a widely used basis for the Hilbert space relies on the representations induced by the underlying gauge group, with a truncation that keeps only a set of the lowest dimensional representations. This works well at large bare gauge coupling, but becomes less efficient at small coupling, which is required for the continuum limit of the lattice theory. In this work, we develop a new basis suitable for the simulation of an SU(2) lattice gauge theory in the maximal tree gauge. In particular, we show how to perform a Hamiltonian truncation so that the eigenvalues of both the magnetic and electric gauge-fixed Hamiltonian are mostly preserved, which allows for this basis to be used at all values of the coupling. Little prior knowledge is assumed, so this may also be used as an introduction to the subject of Hamiltonian formulations of lattice gauge theories. Published by the American Physical Society2024}, journal = {Physical Review D}, volume = {109}, number = {7}, publisher = {Phys.Rev.D 109 (2024) 7, 074501}, author = {D’Andrea, Irian and Bauer, Christian W and Grabowska, Dorota M and Freytsis, Marat}, }</div> <div class="modal-footer"> <button class="btn btn-sm btn-default" data-dismiss="modal" aria-hidden="true">Close</button> </div> </div> </div> </div></li> <li class="divider"></li> </ul> <ul class="nav nav-list" style="font-size: 14px; font-family: Arial Regular;"> <li class="nav-header header-format">Export Metadata</li> <li class="links-format"><a href="https://par.nsf.gov/endnote?osti_id=10556983">EndNote</a></li> <li class="links-format"><a href="https://par.nsf.gov/export/format:excel/osti-id:10556983">Excel</a></li> <li class="links-format"><a href="https://par.nsf.gov/export/format:csv/osti-id:10556983">CSV</a></li> <li class="links-format"><a href="https://par.nsf.gov/export/format:xml/osti-id:10556983">XML</a></li> <li class="divider"></li> </ul> <ul class="nav nav-list" style="font-size: 14px; font-family: Arial Regular;"> <li class="nav-header header-format">Save / Share this Record</li> <li class="links-format"><a href="#shareemail" data-toggle="modal">Send to Email</a> <div id="shareemail" class="modal" tabindex="-1" role="dialog" aria-labelledby="shareemail_label" aria-hidden="true"> <div class="modal-dialog"> <div class="modal-content"> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal" aria-hidden="true">×</button> <strong id="shareemail_label" style="margin: 0px;">Send to Email</strong> </div> <form id="sendtoemail-form" style="margin-bottom: 0px;"> <div class="modal-body" id="shareemail_body"> <div class="modal-body-default"> <label for="sendtoemail-email">Email address:</label><br/> <input type="text" name="email" value="" class="col-md-5 input-sm form-control" id="sendtoemail-email"/> <input type="hidden" name="osti_id" id="sendtoemail-osti_id" value="10556983" /> <input type="hidden" name="subject" id="sendtoemail-subject" /> <div class="clearfix"></div> <div class="hide"><label for="sendtoemail-body">Content:</label></div> <textarea name="body" id="sendtoemail-body" style="display:none;"></textarea> </div> <div class="modal-body-submitted hide"> </div> </div> <div class="modal-footer"> <button class="btn btn-sm btn-default" data-dismiss="modal" aria-hidden="true">Close</button> <button class="btn btn-sm btn-default" aria-hidden="true" type="submit" id="shareemail_submit"> <span class="fa fa-envelope"></span> Send </button> </div> </form> </div> </div> </div> </li> </ul> </div> <div class="push_top"></div> </div> </div> </div> </div> </div> </div> <input type="hidden" id="host_url" value="https://par.nsf.gov"/> <input type="hidden" id="base_url" value="/"/> <input type="hidden" id="param_osti_id" value="10556983"/> <span id="highlight-data"> </span> </div> </div> <footer class="row" id="footer-wrapper"> <div class="footer-content"> <div id="footerOSTI" class=" hidden-print"> <ul> <li><a target="_blank" rel="noreferrer" href="http://www.nsf.gov/policies/">Website Policies</a> | <a target="_blank" rel="noreferrer" href="http://www.nsf.gov/about/performance/">Budget and Performance</a> | <a target="_blank" rel="noreferrer" href="http://www.nsf.gov/oig/">Inspector General</a> | <a target="_blank" rel="noreferrer" href="http://www.nsf.gov/policies/privacy.jsp">Privacy</a> | <a target="_blank" rel="noreferrer" href="http://www.nsf.gov/policies/foia.jsp">FOIA</a> | <a target="_blank" rel="noreferrer" href="http://www.nsf.gov/od/odi/notice.jsp">No FEAR Act</a> | <a target="_blank" rel="noreferrer" href="http://usa.gov">USA.gov</a> | <a target="_blank" rel="noreferrer" href="http://www.nsf.gov/policies/access.jsp">Accessibility</a> | <a target="_blank" rel="noreferrer" href="http://www.nsf.gov/policies/nsf_plain_language.jsp">Plain Language</a> | <a target="_blank" rel="noreferrer" href="http://www.nsf.gov/help/contact.jsp">Contact</a> | <a target="_blank" rel="noreferrer" href="https://nsf.gov/help/">Help</a> </li> </ul> The National Science Foundation, 2415 Eisenhower Avenue, Alexandria, Virginia 22314, USA Tel: (703) 292-5111, FIRS: (800) 877-8339 | TDD: (800) 281-8749 </div> </div> </footer> </div> <div id="authorselect" class="modal" tabindex="-1" role="dialog" aria-labelledby="authorselect_label" aria-hidden="true"> <div class="modal-dialog"> <div class="modal-content"> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal" aria-hidden="true">×</button> <div id="authorselect_label">Author Select</div> </div> <form id="authorselect-form" style="margin-bottom: 0px;"> <input type="hidden" name="pg" id="authorselect-pg" value="1" /> <div class="modal-body" id="authorselect_body"> <div class="row"> <div class="col-md-4"> <label for="authorselect-lname">Last Name:</label><br /> <input type="text" name="lname" class="input-sm form-control" id="authorselect-lname" placeholder="Last name" /><br /> </div> <div class="col-md-4"> <label for="authorselect-fname">First Name:</label><br /> <input type="text" name="fname" class="input-sm form-control" id="authorselect-fname" placeholder="First name" /> </div> <div class="col-md-2">  <br /> <a href="#" onclick="$('#authorselect-form').submit(); return false;" class="btn btn-sm btn-default"><span class="fa fa-search"></span><span class="sr-only">Search</span></a> </div> </div> <div class="push_top"></div> <div class="row"> <div class="col-md-12"> <ul class="nav nav-tabs"> <li class="active"><a href="#authorselect-tab-res" id="authorselect-tab-res-btn" data-toggle="tab">Search Results</a></li> <li><a href="#authorselect-tab-sel" id="authorselect-tab-sel-btn" data-toggle="tab">Selected Authors</a></li> </ul> <div class="tab-content"> <div class="tab-pane active" id="authorselect-tab-res" style="max-height: 450px;"> <div class="padding text-muted" id="authorselect-tab-res-content">Type in a name, or the first few letters of a name, in one or both of appropriate search boxes above and select the search button. An attempt will be made to match authors that most closely relate to the text you typed.</div> </div> <div class="tab-pane" id="authorselect-tab-sel" style="max-height: 450px;"> <div class="padding text-muted" id="authorselect-tab-sel-content">No authors are currently selected. Choosing "Select These Authors" will enter a blank value for author search in the parent form.</div> </div> </div> </div> </div> </div> <div class="modal-footer"> <button class="btn btn-sm btn-default" data-dismiss="modal" aria-hidden="true">Close</button> <button class="btn btn-sm btn-default" aria-hidden="true" type="button" id="authorselect_review" onclick="$('#authorselect-tab-sel-btn').click();" style="display: none;">Review Selections</button> <button class="btn btn-sm btn-default" aria-hidden="true" type="button" id="authorselect_submit" onclick="authorSelectAddToForm(); $('#authorselect').modal('hide');">Add Selections</button> </div> </form> </div> </div> </div> <div id="editorselect" class="modal" tabindex="-1" role="dialog" aria-labelledby="editorselect_label" aria-hidden="true"> <div class="modal-dialog"> <div class="modal-content"> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal" aria-hidden="true">×</button> <div id="editorselect_label">Editor Select</div> </div> <form id="editorselect-form" style="margin-bottom: 0px;"> <input type="hidden" name="pg" id="editorselect-pg" value="1" /> <div class="modal-body" id="editorselect_body"> <div class="row"> <div class="col-md-4"> <label for="editorselect-lname">Last Name:</label><br /> <input type="text" name="lname" class="input-sm form-control" id="editorselect-lname" placeholder="Last name" /><br /> </div> <div class="col-md-4"> <label for="editorselect-fname">First Name:</label><br /> <input type="text" name="fname" class="input-sm form-control" id="editorselect-fname" placeholder="First name" /> </div> <div class="col-md-2">  <br /> <a href="#" onclick="$('#editorselect-form').submit(); return false;" class="btn btn-sm btn-default"><span class="fa fa-search"></span><span class="sr-only">Search</span></a> </div> </div> <div class="push_top"></div> <div class="row"> <div class="col-md-12"> <ul class="nav nav-tabs"> <li class="active"><a href="#editorselect-tab-res" id="editorselect-tab-res-btn" data-toggle="tab">Search Results</a></li> <li><a href="#editorselect-tab-sel" id="editorselect-tab-sel-btn" data-toggle="tab">Selected Editors</a></li> </ul> <div class="tab-content"> <div class="tab-pane active" id="editorselect-tab-res" style="max-height: 450px;"> <div class="padding text-muted" id="editorselect-tab-res-content">Type in a name, or the first few letters of a name, in one or both of appropriate search boxes above and select the search button. An attempt will be made to match editors that most closely relate to the text you typed.</div> </div> <div class="tab-pane" id="editorselect-tab-sel" style="max-height: 450px;"> <div class="padding text-muted" id="editorselect-tab-sel-content">No editors are currently selected. Choosing "Select These Editors" will enter a blank value for editor search in the parent form.</div> </div> </div> </div> </div> </div> <div class="modal-footer"> <button class="btn btn-sm btn-default" data-dismiss="modal" aria-hidden="true">Close</button> <button class="btn btn-sm btn-default" aria-hidden="true" type="button" id="editorselect_review" onclick="$('#editorselect-tab-sel-btn').click();" style="display: none;">Review Selections</button> <button class="btn btn-sm btn-default" aria-hidden="true" type="button" id="editorselect_submit" onclick="editorSelectAddToForm();$('#editorselect').modal('hide');">Add Selections</button> </div> </form> </div> </div> </div> <div class="push_top"></div> <!-- External Link Modal --> <div class="modal fade" id="external-link-modal" tabindex="-1" role="dialog"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> <button type="button" class="close nsf-close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">×</span> </button> <h4 class="modal-title"><strong>Warning: Leaving National Science Foundation Website</strong></h4> </div> <div class="modal-body"> <div> <img src="https://par.nsf.gov/img/nsf/nsf_logo.png" width="292" height="53" alt="National Science Foundation Logo" border="0" /> </div> <br> <span>You are now leaving the National Science Foundation website to go to a non-government website.</span> <br> <br> Website: <a id="external-link-url" rel='noopener noreferrer' target='_blank'></a> <br> <br> <span> NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site. </span> <br> <br> </div> <div class="modal-footer"> <div class="pull-right"> <button id="external-link-continue" type="button" data-extlink="" class="btn btn-primary" data-dismiss="modal"><u>Continue to Site</u></button> <button type="button" class="btn btn-default" data-dismiss="modal"><u>Cancel</u></button> </div> </div> </div> </div> </div> <!-- /content --> <input type='hidden' id='webtrend-id' value='dcsngbilzcxafpc7vw2qgbbij_3j2v'/> <input type='hidden' id='js-context-path' value='https://par.nsf.gov/'/> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/latest.js?config=TeX-MML-AM_CHTML" defer></script> <script type="text/x-mathjax-config" defer> MathJax.Hub.Config({ tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]} }); </script> <noscript></noscript> <script src="https://par.nsf.gov/js/context.js" type="text/javascript" defer></script> <noscript>You must have javascript enabled</noscript> <script src="https://par.nsf.gov/js/libraries/jquery.min.js" type="text/javascript" defer></script> <noscript></noscript> <script src="https://par.nsf.gov/chosen/chosen.jquery.min.js" type="text/javascript" defer></script> <noscript></noscript> <script src="https://par.nsf.gov/js/nsf_pages.extras.min.js" type="text/javascript" defer></script> <noscript></noscript> <script src="https://par.nsf.gov/js/nsf_pages.min.js" type="text/javascript" defer></script> <noscript></noscript> <!--$$$$$$$$$ the following blocks are for WebTrends $$$$$$$$--> <!-- START OF SmartSource Data Collector TAG --> <!-- Copyright (c) 1996-2009 WebTrends Inc. All rights reserved. --> <!-- Version: 8.6.2 --> <!-- Tag Builder Version: 3.0 --> <!-- Created: 5/7/2009 8:32:37 PM --> <script src="https://par.nsf.gov/js/webtrends.min.js" type="text/javascript" defer></script> <noscript></noscript> <!-- ----------------------------------------------------------------------------------- --> <!-- Warning: The two script blocks below must remain inline. Moving them to an external --> <!-- JavaScript include file can cause serious problems with cross-domain tracking. --> <!-- ----------------------------------------------------------------------------------- --> <script src="https://par.nsf.gov/js/webtrend-script.min.js" type="text/javascript" defer></script> <noscript> <div><img alt="" id="DCSIMG" width="1" height="1" src="http://wt.research.gov/dcsngbilzcxafpc7vw2qgbbij_3j2v/njs.gif?dcsuri=/nojavascript&WT.js=No&DCS.dcscfg=1&WT.tv=8.6.2"/></div> </noscript> <script src="https://par.nsf.gov/js/webtrendsactions.min.js" type="text/javascript" defer></script> <noscript></noscript> <!-- $$$$$$$$ End WebTrends $$$$$ --> <!-- /scripts --> </body> <!-- NSF PAGES v.@project.version@ --> </html>