Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Airborne vertically profiling Doppler radar data and output from a ∼1-km-grid-resolution numerical simulation are used to examine how relatively small-scale terrain ridges (∼10–25 km apart and ∼0.5–1.0 km above the surrounding valleys) impact cross-mountain flow, cloud processes, and surface precipitation in deep stratiform precipitation systems. The radar data were collected along fixed flight tracks aligned with the wind, about 100 km long between the Snake River Plain and the Idaho Central Mountains, as part of the 2017 Seeded and Natural Orographic Wintertime clouds: the Idaho Experiment (SNOWIE). Data from repeat flight legs are composited in order to suppress transient features and retain the effect of the underlying terrain. Simulations closely match observed series of terrain-driven deep gravity waves, although the simulated wave amplitude is slightly exaggerated. The deep waves produce pockets of supercooled liquid water in the otherwise ice-dominated clouds (confirmed by flight-level observations and the model) and distort radar-derived hydrometeor trajectories. Snow particles aloft encounter several wave updrafts and downdrafts before reaching the ground. No significant wavelike modulation of radar reflectivity or model ice water content occurs. The model does indicate substantial localized precipitation enhancement (1.8–3.0 times higher than the mean) peaking just downwind of individual ridges, especially those ridges with the most intense wave updrafts, on account of shallow pockets of high liquid water content on the upwind side, leading to the growth of snow and graupel, falling out mostly downwind of the crest. Radar reflectivity values near the surface are complicated by snowmelt, but suggest a more modest enhancement downwind of individual ridges. Significance Statement Mountains in the midlatitude belt and elsewhere receive more precipitation than the surrounding lowlands. The mountain terrain often is complex, and it remains unclear exactly where this precipitation enhancement occurs, because weather radars are challenged by beam blockage and the gauge network is too sparse to capture the precipitation heterogeneity over complex terrain. This study uses airborne profiling radar and high-resolution numerical simulations for four winter storms over a series of ridges in Idaho. One key finding is that while instantaneous airborne radar transects of the cross-mountain flow, vertical drafts, and reflectivity contain much transient small-scale information, time-averaged transects look very much like the model transects. The model indicates substantial surface precipitation enhancement over terrain, peaking over and just downwind of individual ridges. Radar observations suggest less enhancement, but the radar-based assessment is uncertain. The second key conclusion is that, even though orographic gravity waves are felt all the way up into the upper troposphere, the orographic precipitation enhancement is due to processes very close to the terrain.more » « less
-
Abstract Snowpack melting is a crucial water resource for local ecosystems, agriculture, and hydropower in the Intermountain West of the United States. Glaciogenic seeding, a method widely used in mountain regions to enhance precipitation, has been subject to numerous field studies aiming to understand and validate this mechanism. However, investigating precipitation distribution and amounts in mountainous areas is complicated due to the intricate interplay of synoptic circulation patterns and local complex topography. These interactions significantly influence microphysical processes, ultimately affecting the amount and distribution of surface precipitation. To address these challenges, this study leverages Weather Research and Forecasting (WRF) Model simulations, providing high-resolution (900 m), hourly data, spanning the Payette region of Idaho from January to March 2017. We applied the self-organizing map approach to categorize the most representative synoptic circulation patterns and conducted a multiscale analysis to explore their associated environmental conditions and microphysical processes, aiming to assess the cloud seeding potential. The analysis identified four primary synoptic patterns: cold zonal flow (CZF), cold southwesterly flow (CSWF), warm zonal flow (WZF), and warm southwesterly flow (WSWF), constituting 21.3%, 23.1%, 30.0%, and 25.5%, respectively. CSWF and WSWF demonstrated efficiency in generating natural precipitation. These patterns were characterized by abundant supercooled liquid water (SLW) and ice particles, facilitating cloud droplet growth through seeder–feeder processes. On the other hand, CZF exhibited the least SLW and limited potential for cloud seeding, while WZF displayed a lower ice water content but substantial SLW in the diffusion/dendritic growth layer, suggesting a favorable scenario for cloud seeding.
Significance Statement Understanding snowfall amounts and distribution in the mountains and how it is linked to topography, synoptic flow, and microphysical processes will help in the development of effective strategies for cloud seeding operations, managing runoff, reservoir, and mitigating flood risks, garnering substantial interest from stakeholders and the government agencies.
-
Abstract During near-0°C surface conditions, diverse precipitation types (p-types) are possible, including rain, drizzle, freezing rain, freezing drizzle, ice pellets, wet snow, snow, and snow pellets. Near-0°C precipitation affects wide swaths of the United States and Canada, impacting aviation, road transportation, power generation and distribution, winter recreation, ecology, and hydrology. Fundamental challenges remain in observing, diagnosing, simulating, and forecasting near-0°C p-types, particularly during transitions and within complex terrain. Motivated by these challenges, the field phase of the Winter Precipitation Type Research Multi-scale Experiment (WINTRE-MIX) was conducted from 1 February – 15 March 2022 to better understand how multiscale processes influence the variability and predictability of p-type and amount under near-0°C surface conditions. WINTRE-MIX took place near the US / Canadian border, in northern New York and southern Quebec, a region with plentiful near-0°C precipitation influenced by terrain. During WINTRE-MIX, existing advanced mesonets in New York and Quebec were complemented by deployment of: (1) surface instruments, (2) the National Research Council Convair-580 research aircraft with W- and X-band Doppler radars and in situ cloud and aerosol instrumentation, (3) two X-band dual-polarization Doppler radars and a C-band dual-polarization Doppler radar from University of Illinois, and (4) teams collecting manual hydrometeor observations and radiosonde measurements. Eleven intensive observing periods (IOPs) were coordinated. Analysis of these WINTRE-MIX IOPs is illuminating how synoptic dynamics, mesoscale dynamics, and microscale processes combine to determine p-type and its predictability under near-0°C conditions. WINTRE-MIX research will contribute to improving nowcasts and forecasts of near-0°C precipitation through evaluation and refinement of observational diagnostics and numerical forecast models.more » « less
-
Abstract The western United States region, an economic and agricultural powerhouse, is highly dependent on winter snowpack from the mountain west. Coupled with increasing water and renewable electricity demands, the predictability and viability of snowpack resources in a changing climate are becoming increasingly important. In Idaho, specifically, up to 75% of the state’s electricity production comes from hydropower, which is dependent on the timing and volume of spring snowmelt. While we know that 1 April snowpack is declining from SNOTEL observations and is expected to continue to decline as indicated by GCM predictions, our ability to understand the variability of snowfall accumulation and distribution at the regional level is less robust. In this paper, we analyze snowfall events using 0.9-km-resolution WRF simulations to understand the variability of snowfall accumulation and distribution in the mountains of Idaho between 1 October 2016 and 31 April 2017. Various characteristics of snowfall events throughout the season are evaluated, including the spatial coverage, event durations, and snowfall rates, along with the relationship between cloud microphysical variables—particularly liquid and ice water content—on snowfall amounts. Our findings suggest that efficient snowfall conditions—for example, higher levels of elevated supercooled liquid water—can exist throughout the winter season but are more impactful when surface temperatures are near or below freezing. Inefficient snowfall events are common, exceeding 50% of the total snowfall events for the year, with some of those occurring in peak winter. For such events, glaciogenic cloud seeding could make a significant impact on snowpack development and viability in the region.
Significance Statement The purpose and significance of this study is to better understand the variability of snowfall event accumulation and distribution in the Payette Mountains region of Idaho as it relates to the local topography, the drivers of snowfall events, the cloud microphysical properties, and what constitutes an efficient or inefficient snowfall event (i.e., its ability to convert atmospheric liquid water into snowfall). As part of this process, we identify how many snowfall events in a season are inefficient to determine the number of snowfall events in a season that are candidates for enhancement by glaciogenic cloud seeding.
-
Abstract In Part II, two classes of vertical motions, fixed (associated with vertically propagating gravity waves tied to flow over topography) and transient (associated primarily with vertical wind shear and conditional instability within passing weather systems), were diagnosed over the Payette River basin of Idaho during the Seeded and Natural Orographic Wintertime Clouds: The Idaho Experiment (SNOWIE). This paper compares vertical motions retrieved from airborne Doppler radial velocity measurements with those from a 900-m-resolution model simulation to determine the impact of transient vertical motions on trajectories of ice particles initiated by airborne cloud seeding. An orographic forcing index, developed to compare vertical motion fields retrieved from the radar with the model, showed that fixed vertical motions were well resolved by the model while transient vertical motions were not. Particle trajectories were calculated for 75 cross-sectional pairs, each differing only by the observed and modeled vertical motion field. Wind fields and particle terminal velocities were otherwise identical in both trajectories so that the impact of transient vertical circulations on particle trajectories could be isolated. In 66.7% of flight-leg pairs, the distance traveled by particles in the model and observations differed by less than 5 km with transient features having minimal impact. In 9.3% of the pairs, model and observation trajectories landed within the ideal target seeding elevation range (>2000 m), whereas, in 77.3% of the pairs, both trajectories landed below the ideal target elevation. Particles in the observations and model descended into valleys on the mountains’ lee sides in 94.2% of cases in which particles traveled less than 37 km.more » « less
-
null (Ed.)Abstract Data from scanning radars, radiosondes, and vertical profilers deployed during three field campaigns are analyzed to study interactions between cloud-scale updrafts associated with initiating deep moist convection and the surrounding environment. Three cases are analyzed in which the radar networks permitted dual-Doppler wind retrievals in clear air preceding and during the onset of surface precipitation. These observations capture the evolution of: i) the mesoscale and boundary layer flow, and ii) low-level updrafts associated with deep moist convection initiation (CI) events yielding sustained or short-lived precipitating storms. The elimination of convective inhibition did not distinguish between sustained and unsustained CI events, though the vertical distribution of convective available potential energy may have played a role. The clearest signal differentiating the initiation of sustained versus unsustained precipitating deep convection was the depth of the low-level horizontal wind convergence associated with the mesoscale flow feature triggering CI, a sharp surface wind shift boundary or orographic upslope flow. The depth of the boundary layer relative to the height of the LFC failed to be a consistent indicator of CI potential. Widths of the earliest detectable low-level updrafts associated with sustained precipitating deep convection were ~3-5 km, larger than updrafts associated with surrounding boundary layer turbulence (~1-3-km wide). It is hypothesized that updrafts of this larger size are important for initiating cells to survive the destructive effects of buoyancy dilution via entrainment.more » « less
-
null (Ed.)Abstract The Remote Sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observations (RELAMPAGO) and Cloud, Aerosol, and Complex Terrain Interactions (CACTI) projects deployed a high-spatiotemporal-resolution radiosonde network to examine environments supporting deep convection in the complex terrain of central Argentina. This study aims to characterize atmospheric profiles most representative of the near-cloud environment (in time and space) to identify the mesoscale ingredients affecting storm initiation and growth. Spatiotemporal autocorrelation analysis of the soundings reveals that there is considerable environmental heterogeneity, with boundary layer thermodynamic and kinematic fields becoming statistically uncorrelated on scales of 1–2 h and 30 km. Using this as guidance, we examine a variety of environmental parameters derived from soundings collected within close proximity (30 km in space and 30 min in time) of 44 events over 9 days where the atmosphere either: 1) supported the initiation of sustained precipitating convection, 2) yielded weak and short-lived precipitating convection, or 3) produced no precipitating convection in disagreement with numerical forecasts from convection-allowing models (i.e., Null events). There are large statistical differences between the Null event environments and those supporting any convective precipitation. Null event profiles contained larger convective available potential energy, but had low free-tropospheric relative humidity, higher freezing levels, and evidence of limited horizontal convergence near the terrain at low levels that likely suppressed deep convective growth. We also present evidence from the radiosonde and satellite measurements that flow–terrain interactions may yield gravity wave activity that affects CI outcome.more » « less
-
Abstract A dry-air intrusion induced by the tropopause folding split the deep cloud into two layers resulting in a shallow orographic cloud with a supercooled liquid cloud top at around −15°C and an ice cloud above it on 19 January 2017 during the Seeded and Natural Orographic Wintertime Clouds: The Idaho Experiment (SNOWIE). The airborne AgI seeding of this case was simulated by the WRF Weather Modification (WRF-WxMod) Model with different configurations. Simulations at different grid spacing, driven by different reanalysis data, using different model physics were conducted to explore the ability of WRF-WxMod to capture the properties of natural and seeded clouds. The detailed model–observation comparisons show that the simulation driven by ERA5 data, using Thompson–Eidhammer microphysics with 30% of the CCN climatology, best captured the observed cloud structure and supercooled liquid water properties. The ability of the model to correctly capture the wind field was critical for successful simulation of the seeding plume locations. The seeding plume features and ice number concentrations within them from the large-eddy simulations (LES) are in better agreement with observations than non-LES runs mostly due to weaker AgI dispersion associated with the finer grid spacing. Seeding effects on precipitation amount and impacted areas from LES seeding simulations agreed well with radar-derived values. This study shows that WRF-WxMod is able to simulate and quantify observed features of natural and seeded clouds given that critical observations are available to validate the model. Observation-constrained seeding ensemble simulations are proposed to quantify the AgI seeding impacts on wintertime orographic clouds. Significance Statement Recent observational work has demonstrated that the impact of airborne glaciogenic seeding of orographic supercooled liquid clouds is detectable and can be quantified in terms of the extra ground precipitation. This study aims, for the first time, to simulate this seeding impact for one well-observed case. The stakes are high: if the model performs well in this case, then seasonal simulations can be conducted with appropriate configurations after validations against observations, to determine the impact of a seeding program on the seasonal mountain snowpack and runoff, with more fidelity than ever. High–resolution weather simulations inherently carry uncertainty. Within the envelope of this uncertainty, the model compares very well to the field observations.more » « less
-
Abstract This paper examines the controls on supercooled liquid water content (SLWC) and drop number concentrations (
Nt ,CDP) over the Payette River basin during the Seeded and Natural Orographic Wintertime Clouds: The Idaho Experiment (SNOWIE) campaign. During SNOWIE, 27.4% of 1-Hz in situ cloud droplet probe samples were in an environment containing supercooled liquid water (SLW). The interquartile range of SLWC, when present, was found to be 0.02–0.18 g m−3and 13.3–37.2 cm−3forNt ,CDP, with the most extreme values reaching 0.40–1.75 g m−3and 150–320 cm−3in isolated regions of convection and strong shear-induced turbulence. SLWC andNt ,CDPdistributions are shown to be directly related to cloud-top temperature and ice particle concentrations, consistent with past research over other mountain ranges. Two classes of vertical motions were analyzed as potential controls on SLWC andNt ,CDP, the first forced by the orography and fixed in space relative to the topography (stationary waves) and the second transient, triggered by vertical shear and instability within passing synoptic-scale cyclones. SLWC occurrence and magnitudes, andNt ,CDPassociated with fixed updrafts were found to be normally distributed about ridgelines when SLW was present. SLW was more likely to form at low altitudes near the terrain slope associated with fixed waves due to higher mixing ratios and larger vertical air parcel displacements at low altitudes. When considering transient updrafts, SLWC andNt ,CDPappear more uniformly distributed over the flight track with little discernable terrain dependence as a result of time and spatially varying updrafts associated with passing weather systems. The implications for cloud seeding over the basin are discussed. -
Abstract Thunderstorms that produce hail accumulations at the surface can impact residents by obstructing roadways, closing airports, and causing localized flooding from hail-clogged drainages. These storms have recently gained an increased interest within the scientific community. However, differences that are observable in real time between these storms and storms that produce nonimpactful hail accumulations have yet to be documented. Similarly, the characteristics within a single storm that are useful to quantify or predict hail accumulations are not fully understood. This study uses lightning and dual-polarization radar data to characterize hail accumulations from three storms that occurred on the same day along the Colorado–Wyoming Front Range. Each storm’s characteristics are verified against radar-derived hail accumulation maps and in situ observations. The storms differed in maximum accumulation, either producing 22 cm, 7 cm, or no accumulation. The magnitude of surface hail accumulations is found to be dependent on a combination of in-cloud hail production, storm translation speed, and hailstone melting. The optimal combination for substantial hail accumulations is enhanced in-cloud hail production, slow storm speed, and limited hailstone melting. However, during periods of similar in-cloud hail production, lesser accumulations are derived when storm speed and/or hailstone melting, identified by radar presentation, is sufficiently large. These results will aid forecasters in identifying when hail accumulations are occurring in real time.more » « less