Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The increasing complexity of integrated circuit design requires customizing Power, Performance, and Area (PPA) metrics according to different application demands. However, most engineers cannot anticipate requirements early in the design process, often discovering mismatches only after synthesis, necessitating iterative optimization or redesign. Some works have shown the promising capabilities of large language models (LLMs) in hardware design generation tasks, but they fail to tackle the PPA trade-off problem. In this work, we propose an LLM-based reinforcement learning framework, PPA-RTL, aiming to introduce LLMs as a cutting-edge automation tool by directly incorporating post-synthesis metrics PPA into the hardware design generation phase. We design PPA metrics as reward feedback to guide the model in producing designs aligned with specific optimization objectives across various scenarios. The experimental results demonstrate that PPA-RTL models, optimized for Power, Performance, Area, or their various combinations, significantly improve in achieving the desired trade-offs, making PPA-RTL applicable to a variety of application scenarios and project constraints.more » « lessFree, publicly-accessible full text available November 29, 2026
-
Integrated circuit design is a highly complex and time-consuming process. Leveraging large language models (LLMs) for automating hardware design generation is receiving increasing attention. A prominent challenge is that the inherent structure of the text is overlooked during the training process. Existing efforts focus on supervised fine-tuning LLMs to acquire specialized knowledge in hardware design, without considering the conflict between LLMs' linear data processing and the structural nature inherent in hardware design. In this work, we propose a novel LLM-based reinforcement learning (RL) framework that integrates Abstract Syntax Trees (ASTs) and Data Flow Graphs (DFGs). Our approach enhances the accuracy of generated hardware code by capturing the syntactic and semantic structures of hardware designs. Experimental results show that the SFT-RL model integrated with Text, AST, and DFG achieves notable improvements: a 12.57% increase on VerilogEval-Human and a 5.49% increase on VerilogEval-Machine, outperforming GPT-4; a 14.29% improvement on RTLLM, approaching GPT-4.more » « lessFree, publicly-accessible full text available November 20, 2026
-
Hardware security verification in hardware design has been identified as a significant bottleneck due to complexity and time-to-market constraints. Assertion-Based Verification is a recognized solution to this challenge; however, assertion generation relies on expertise and labor. While LLMs show promise as automated tools, existing approaches often rely on complex prompt engineering, requiring expert validation. The challenge lies in identifying effective methods for constructing training datasets that enhance LLMs' hardware performance. We introduce HADA (Hardware Assertion through Data Augmentation), a novel framework to train hardware debug specific expert LLM by leveraging its ability to integrate knowledge from formal verification tools, hardware security knowledge database, and version control system. Our results demonstrate that integrating multi-source data significantly enhances the effectiveness of hardware security verification, with each addressing the limitations of the others.more » « lessFree, publicly-accessible full text available June 23, 2026
-
Free, publicly-accessible full text available February 1, 2026
-
Free, publicly-accessible full text available December 2, 2025
-
This paper presents LLM4SecHW, a novel framework for hardware debugging that leverages domain-specific Large Language Model (LLM). Despite the success of LLMs in automating various software development tasks, their application in the hardware security domain has been limited due to the constraints of commercial LLMs and the scarcity of domain-specific data. To address these challenges, we propose a unique approach to compile a dataset of open-source hardware design defects and their remediation steps, utilizing version control data. This dataset provides a substantial foundation for training machine learning models for hardware. LLM4SecHW employs fine-tuning of medium-sized LLMs based on this dataset, enabling the identification and rectification of bugs in hardware designs. This pioneering approach offers a reference workflow for the application of fine-tuning domain-specific LLMs in other research areas. We evaluate the performance of our proposed system on various open-source hardware designs, demonstrating its efficacy in accurately identifying and correcting defects. Our work brings a new perspective on automating the quality control process in hardware design.more » « less