skip to main content

Search for: All records

Creators/Authors contains: "Fuad, M. Muztaba"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In traditional classroom setting, lecturing is the prominent method of transferring knowledge to students. However this passive mode of instruction does not keep student engaged and interested longer in the class. Although mobile devices are used extensively in everyday life and have a bad reputation of creating distraction during class, it can be used to make student's class participation more interactive and engaging. This paper presents one such approach, which is fundamentally different than existing ones by allowing students to participate in active learning during class session by using their mobile devices. This research envision interactive problem applications which will run in student mobile devices, which faculty can initiate remotely and where student can actively participate to solve problem in a hands-on manner. This paper presents the development of a Karnaugh map interactive mobile application and its incorporation into Mobile Response System.
  2. A recent Pew research center study of mobile device usage revealed that, African American and Latinos are the most active users of the Internet from mobile devices. The study also revealed that minority cell phone owners take advantage of a much greater range of their phone's features compared with people of other ethnicities. At Winston Salem State University (WSSU), it is common for students to multitask and use their mobile devices while in class for studying, or performing other activities. This paper reports our ongoing experiences running a National Science Foundation (NSF)-sponsored targeted Infusion Project (TIP) in Computer Science Department that aims to leverage this situation by developing a mobile classroom response system (MRS) to allow students solve interactive problems in their mobile devices in order to improve their class engagement and problem solving skills. By allowing them to solve problems in their preferred devices, the project expects to create a friendly learning environment where the students want to retain, be active and skillful.
  3. Evidence-based instructional practices were incorporated in class, which gave immediate indication on student's problem solving skills and class participation information. This pedagogy showed positive results and broader acceptance by students in several semesters of intervention. Significant usage of mobile devices during class motivates the extension of this pedagogical approach of asynchronous problem solving using mobile devices. We believe that use of such devices in the classroom for solving interactive problems will enhance student's abilities to solve problems by using their preferred interaction mode. This paper presents the results of the evidence based pedagogy and development of a mobile classroom response system that extends this pedagogy to help student solve interactive problems in their mobile devices to improve their class engagement and problem solving skills.