- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Fuglie, Keith O (2)
-
Hertel, Thomas W (2)
-
Baldos, Uris_Lantz C (1)
-
Cisneros-Pineda, Alfredo (1)
-
Lobell, David B (1)
-
Villoria, Nelson B (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Research investments in crop improvements, including by national and international agricultural research centers, have made significant contributions to raising yields of staple food crops in developing countries. Although mostly intended to improve food security and rural incomes, innovations in crop production also have major implications for the environment. Building on the latest productivity estimates from historical crop improvements in developing countries and using a gridded (0.25 degrees) equilibrium model of global agriculture, we assess the impacts of improved crop varieties on cropland use, threatened biodiversity, and terrestrial carbon stocks over 1961–2015. We replicate a historical baseline and produce a counterfactual scenario which shows the impact of omitting productivity improvements from these technologies. The results show that higher crop productivity generally lowered commodity prices, which reduced incentives to expand cropland except in those areas where productivity gains outweighed price declines. The net global effect of technology adoption was to limit conversion of natural habitat to agricultural use, although it did cause cropland to expand in some areas. We estimate that adoption of improved crop varieties in developing countries saved on net 16.03 [95% CI, 12.33 to 20.89] million hectares worldwide. With more natural habitat preserved, around 1,043 [95% CI, 616 to 1,503] threatened animal and plant species extinctions were avoided over this period. In addition, net land use savings from the improved crop varieties resulted in avoided terrestrial greenhouse gas (GHG) emissions of around 5.35 [95% CI, 3.75 to 7.22] billion metric tons CO2equivalent retained in terrestrial carbon stocks.more » « lessFree, publicly-accessible full text available February 11, 2026
-
Fuglie, Keith O; Hertel, Thomas W; Lobell, David B; Villoria, Nelson B (, Annual Review of Resource Economics)Agriculture will play a central role in meeting greenhouse gas (GHG) emission targets, as the sector currently contributes ∼22% of global emissions. Because emissions are directly tied to resources employed in farm production, such as land, fertilizer, and ruminant animals, the productivity of input use tends to be inversely related to emissions intensity. We review evidence on how productivity gains in agriculture have contributed to historical changes in emissions, how they affect land use emissions both locally and globally, and how investments in research and development (R&D) affect productivity and therefore emissions. The world average agricultural emissions intensity fell by more than half since 1990, with a strong correlation between a region's agricultural productivity growth and reduction in emissions intensity. Additional investment in agricultural R&D offers an opportunity for cost-effective (more » « less
An official website of the United States government
