skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fujisaki‐Manome, Ayumi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Lake surface temperature extremes have shifted over recent decades, leading to significant ecological and economic impacts. Here, we employed a hydrodynamic-ice model, driven by climate data, to reconstruct over 80 years of lake surface temperature data across the world’s largest freshwater bodies. We analyzed lake surface temperature extremes by examining changes in the 10th and 90th percentiles of the detrended lake surface temperature distribution, alongside heatwaves and cold-spells. Our findings reveal a 20–60% increase in the 10 and 90 percentiles detrended lake surface temperature in the last 50 years relative to the first 30 years. Heatwave and cold-spell intensities, measured via annual degree days, showed strong coherence with the Arctic Oscillation (period: 2.5 years), Southern Oscillation Index (4 years), and Pacific Decadal Oscillation (6.5 years), indicating significant links between lake surface temperature extremes and both interannual and decadal climate teleconnections. Notably, heatwave and cold-spell intensities for all lakes surged by over 100% after 1996 or 1976, aligning with the strongest El-Niño and a major shift in the Pacific Decadal Oscillation, respectively, marking potential regional climate tipping points. This emphasizes the long-lasting impacts of climate change on large lake thermodynamics, which cascade through larger ecological and regional climate systems. 
    more » « less
  2. This dataset contains a record of daily mean air temperature for each of the U.S. Great Lakes from January 1, 1897 to October 22, 2023. These temperatures were derived using the following method. Daily maximum and minimum air temperature data were obtained from the Global Historical Climatology Network-Daily (GHCNd, Menne, et al. 2012) and the Great Lakes Air Temperature/Degree Day Climatology, 1897-1983 (Assel et al. 1995). Daily air temperature was calculated by taking a simple average of daily maximum and minimum air temperature. Following Cohn et al. (2021), a total of 24 coastal locations along the Great Lakes were selected. These 24 locations had relatively consistent station data records since the 1890s. Each of the selected locations had multiple weather stations in their proximity covering the historical period from 1890s to 2023, representing the weather conditions around the location. For most of the locations, datasets from multiple stations in the proximity of each location were combined to create a continuous data record from the 1890s to 2023. When doing so, data consistency was verified by comparing the data during the period when station datasets overlap. This procedure resulted in almost continuous timeseries, except for a few locations that still had temporal gaps of one to several days. Any temporal data gap less than 10 days in the combined timeseries were filled based on the linear interpolation. This resulted in completely continuous timeseries for all the locations. Average daily air temperature was calculated from by simply making an average of timeseries data from corresponding locations around each lake. This resulted in daily air temperature records for all five Great Lakes (Lake Superior, Lake Huron, Lake Michigan, Lake Erie, and Lake Ontario). 
    more » « less
  3. Abstract Extreme water temperatures impact the ecological and economic value of freshwater systems. They disrupt fisheries habitat, trigger harmful algal blooms, and stress coastal infrastructure. This study examines the spatiotemporal patterns of heatwaves and cold‐spells in the Great Lakes using 82 years of simulated surface temperature data. Significant increasing trends in heatwave duration were observed in Lake Superior and Lake Michigan‐Huron, while cold‐spell duration increased on all lakes except Ontario. Temperature anomalies during these events varied from the climatological mean by as much as ±10C, but did not change significantly over time. Analysis revealed substantial spatial variability in heatwaves and cold‐spells, both within and across lakes, with differences driven by air temperature and ice cover anomalies as well as associated climate teleconnections (i.e., the East Pacific/North Pacific and Atlantic Multidecadal Oscillation). These findings highlight the importance of both climatic and lake processes in shaping extreme temperature events. 
    more » « less
    Free, publicly-accessible full text available July 28, 2026
  4. Abstract Among its many impacts, climate warming is leading to increasing winter air temperatures, decreasing ice cover extent, and changing winter precipitation patterns over the Laurentian Great Lakes and their watershed. Understanding and predicting the consequences of these changes is impeded by a shortage of winter‐period studies on most aspects of Great Lake limnology. In this review, we summarize what is known about the Great Lakes during their 3–6 months of winter and identify key open questions about the physics, chemistry, and biology of the Laurentian Great Lakes and other large, seasonally frozen lakes. Existing studies show that winter conditions have important effects on physical, biogeochemical, and biological processes, not only during winter but in subsequent seasons as well. Ice cover, the extent of which fluctuates dramatically among years and the five lakes, emerges as a key variable that controls many aspects of the functioning of the Great Lakes ecosystem. Studies on the properties and formation of Great Lakes ice, its effect on vertical and horizontal mixing, light conditions, and biota, along with winter measurements of fundamental state and rate parameters in the lakes and their watersheds are needed to close the winter knowledge gap. Overcoming the formidable logistical challenges of winter research on these large and dynamic ecosystems may require investment in new, specialized research infrastructure. Perhaps more importantly, it will demand broader recognition of the value of such work and collaboration between physicists, geochemists, and biologists working on the world's seasonally freezing lakes and seas. 
    more » « less